Citation: | WEI Jing, WANG Qiu-wen, SUN Xiang-yu, LI Hong-bo. Research progress of quasi-two-dimensional perovskite solar cells[J].Chinese Optics, 2021, 14(1): 100-116.doi:10.37188/CO.2020-0082 |
[1] |
LEE M M, TEUSCHER J, MIYASAKA T,
et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J].
Science, 2012, 338(6107): 643-647.
doi:10.1126/science.1228604
|
[2] |
LI ZH, YANG M J, PARK J S,
et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys[J].
Chemistry of Materials, 2016, 28(1): 284-292.
doi:10.1021/acs.chemmater.5b04107
|
[3] |
AMAT A, MOSCONI E, RONCA E,
et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting[J].
Nano Letters, 2014, 14(6): 3608-3616.
doi:10.1021/nl5012992
|
[4] |
KIM H S, IM S H, PARK N G. Organolead halide perovskite: new horizons in solar cell research[J].
The Journal of Physical Chemistry C, 2014, 118(11): 5615-5625.
doi:10.1021/jp409025w
|
[5] |
GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J].
Nature Photonics, 2014, 8(7): 506-514.
doi:10.1038/nphoton.2014.134
|
[6] |
CORREA-BAENA J P, SALIBA M, BUONASSISI T,
et al. Promises and challenges of perovskite solar cells[J].
Science, 2017, 358(6364): 739-744.
doi:10.1126/science.aam6323
|
[7] |
LI W, WANG ZH M, DESCHLER F,
et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites[J].
Nature Reviews Materials, 2017, 2(3): 16099.
doi:10.1038/natrevmats.2016.99
|
[8] |
CHEN SH, SHI G Q. Two-dimensional materials for halide perovskite-based optoelectronic devices[J].
Advanced Materials, 2017, 29(24): 1605448.
doi:10.1002/adma.201605448
|
[9] |
XING G CH, MATHEWS N, SUN SH Y,
et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH
3NH
3PbI
3[J].
Science, 2013, 342(6156): 344-347.
doi:10.1126/science.1243167
|
[10] |
PROTESESCU L, YAKUNIN S, BODNARCHUK M I,
et al. Nanocrystals of cesium lead halide perovskites (CsPbX
3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut[J].
Nano Letters, 2015, 15(6): 3692-3696.
doi:10.1021/nl5048779
|
[11] |
WEI J, SHI C L, ZHAO Y CH,
et al. Potentials and challenges towards application of perovskite solar cells[J].
Science China Materials, 2016, 59(9): 769-778.
doi:10.1007/s40843-016-5082-4
|
[12] |
WEI J, ZHAO Q, LI H,
et al. Perovskite solar cells: promise of photovoltaics[J].
Scientia Sinica Technologica, 2014, 44(8): 801-821.
doi:10.1360/N092014-00135
|
[13] |
KOJIMA A, TESHIMA K, SHIRAI Y,
et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J].
Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
doi:10.1021/ja809598r
|
[14] |
NREL efficiency chart[EB/OL]. [2020-03-11].
https://www.nrel.gov/pv/cell-efficiency.html.
|
[15] |
WANG Z, SHI Z J, LI T T,
et al. Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion[J].
Angewandte Chemie International Edition, 2017, 56(5): 1190-1212.
doi:10.1002/anie.201603694
|
[16] |
LI ZH, XIAO CH X, YANG Y,
et al. Extrinsic ion migration in perovskite solar cells[J].
Energy&
Environmental Science, 2017, 10(5): 1234-1242.
|
[17] |
CHEN B, RUDD P N, YANG SH,
et al. Imperfections and their passivation in halide perovskite solar cells[J].
Chemical Society Reviews, 2019, 48(14): 3842-3867.
doi:10.1039/C8CS00853A
|
[18] |
LANG F, SHARGAIEVA O, BRUS V V,
et al. Influence of radiation on the properties and the stability of hybrid perovskites[J].
Advanced Materials, 2018, 30(3): 1702905.
doi:10.1002/adma.201702905
|
[19] |
WEI J, LI H, ZHAO Y CH,
et al. Suppressed hysteresis and improved stability in perovskite solar cells with conductive organic network[J].
Nano Energy, 2016, 26: 139-147.
doi:10.1016/j.nanoen.2016.05.023
|
[20] |
WEI J, ZHAO Y CH, LI H,
et al. Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells[J].
The Journal of Physical Chemistry Letters, 2014, 5(21): 3937-3945.
doi:10.1021/jz502111u
|
[21] |
ZHAO Y CH, WEI J, LI H,
et al. A polymer scaffold for self-healing perovskite solar cells[J].
Nature Communications, 2016, 7(1): 10228.
doi:10.1038/ncomms10228
|
[22] |
WEI J, GUO F W, WANG X,
et al. SnO
2-in-polymer matrix for high-efficiency perovskite solar cells with improved reproducibility and stability[J].
Advanced Materials, 2018, 30(52): 1805153.
doi:10.1002/adma.201805153
|
[23] |
WEI J, GUO F W, LIU B,
et al. UV-inert ZnTiO
3electron selective layer for photostable perovskite solar cells[J].
Advanced Energy Materials, 2019, 9(40): 1901620.
doi:10.1002/aenm.201901620
|
[24] |
LEI Y, GU L Y, HE W W,
et al. Intrinsic charge carrier dynamics and device stability of perovskite/ZnO mesostructured solar cells in moisture[J].
Journal of Materials Chemistry A, 2016, 4(15): 5474-5481.
doi:10.1039/C6TA00614K
|
[25] |
ETGAR L. The merit of perovskite's dimensionality; can this replace the 3D halide perovskite?[J].
Energy&
Environmental Science, 2018, 11(2): 234-242.
|
[26] |
WANG H, DONG Z, LIU H,
et al. Roles of organic molecules in inorganic CsPbX
3perovskite solar cells[J].
Advanced Energy Materials, 2020, 200290.
|
[27] |
ZHANG Y L, WANG P J, TANG M CH,
et al. Dynamical transformation of two-dimensional perovskites with alternating cations in the interlayer space for high-performance photovoltaics[J].
Journal of the American Chemical Society, 2019, 141(6): 2684-2694.
doi:10.1021/jacs.8b13104
|
[28] |
ZHANG ZH SH, FANG W H, LONG R,
et al. Exciton dissociation and suppressed charge recombination at 2D perovskite edges: Key roles of unsaturated halide bonds and thermal disorder[J].
Journal of the American Chemical Society, 2019, 141(39): 15557-15566.
doi:10.1021/jacs.9b06046
|
[29] |
ZHOU N, HUANG B L, SUN M Z,
et al. The spacer cations interplay for efficient and stable layered 2D perovskite solar cells[J].
Advanced Energy Materials, 2020, 10(1): 1901566.
doi:10.1002/aenm.201901566
|
[30] |
LI C H, LIAO M Y, CHEN C H,
et al. Recent progress of anion-based 2D perovskites with different halide substitutions[J].
Journal of Materials Chemistry C, 2020, 8(13): 4294-4302.
doi:10.1039/C9TC06964J
|
[31] |
LI X T, KE W J, TRAORÉ B,
et al. Two-dimensional Dion-Jacobson hybrid lead iodide perovskites with aromatic diammonium cations[J].
Journal of the American Chemical Society, 2019, 141(32): 12880-12890.
doi:10.1021/jacs.9b06398
|
[32] |
MAO L L, STOUMPOS C C, KANATZIDIS M G. Two-dimensional hybrid halide perovskites: principles and promises[J].
Journal of the American Chemical Society, 2019, 141(3): 1171-1190.
doi:10.1021/jacs.8b10851
|
[33] |
GANGADHARAN D T, MA D L. Searching for stability at lower dimensions: current trends and future prospects of layered perovskite solar cells[J].
Energy&
Environmental Science, 2019, 12(10): 2860-2889.
|
[34] |
ZHOU T, LAI H T, LIU T T,
et al. Highly efficient and stable solar cells based on crystalline oriented 2D/3D hybrid perovskite[J].
Advanced Materials, 2019, 31(32): 1901242.
|
[35] |
FU Y P, ZHENG W H, WANG X X,
et al. Multicolor heterostructures of two-dimensional layered halide perovskites that show interlayer energy transfer[J].
Journal of the American Chemical Society, 2018, 140(46): 15675-15683.
doi:10.1021/jacs.8b07843
|
[36] |
GRANCINI G, NAZEERUDDIN M K. Dimensional tailoring of hybrid perovskites for photovoltaics[J].
Nature Reviews Materials, 2019, 4(1): 4-22.
doi:10.1038/s41578-018-0065-0
|
[37] |
TIAN X X, ZHANG Y ZH, ZHENG R K,
et al. Two-dimensional organic-inorganic hybrid Ruddlesden-Popper perovskite materials: preparation, enhanced stability, and applications in photodetection[J].
Sustainable Energy&
Fuels, 2020, 4(5): 2087-2113.
|
[38] |
HUANG P, KAZIM S, WANG M K,
et al. Toward phase stability: dion-Jacobson layered perovskite for solar cells[J].
ACS Energy Letters, 2019, 4(12): 2960-2974.
doi:10.1021/acsenergylett.9b02063
|
[39] |
MA S, CAI M L, CHENG T,
et al. Two-dimensional organic-inorganic hybrid perovskite: from material properties to device applications[J].
Science China Materials, 2018, 61(10): 1257-1277.
doi:10.1007/s40843-018-9294-5
|
[40] |
LIAO Y Q, LIU H F, ZHOU W J,
et al. Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance[J].
Journal of the American Chemical Society, 2017, 139(19): 6693-6699.
doi:10.1021/jacs.7b01815
|
[41] |
BAI Y, XIAO SH, HU CH,
et al. Dimensional engineering of a graded 3D-2D halide perovskite interface enables ultrahigh
V
ocenhanced stability in the p-i-n photovoltaics[J].
Advanced Energy Materials, 2017, 7(20): 1701038.
doi:10.1002/aenm.201701038
|
[42] |
GAN X Y, WANG O, LIU K Y,
et al. 2D homologous organic-inorganic hybrids as light-absorbers for planer and nanorod-based perovskite solar cells[J].
Solar Energy Materials and Solar Cells, 2017, 162: 93-102.
doi:10.1016/j.solmat.2016.12.047
|
[43] |
LI N, ZHU Z L, CHUEH CH CH,
et al. Mixed cation FA
xPEA
1–xPbI
3with enhanced phase and ambient stability toward high-performance perovskite solar cells[J].
Advanced Energy Materials, 2017, 7(1): 1601307.
doi:10.1002/aenm.201601307
|
[44] |
HA S T, LIU X F, ZHANG Q,
et al. Synthesis of organic–inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices[J].
Advanced Optical Materials, 2014, 2(9): 838-844.
doi:10.1002/adom.201400106
|
[45] |
WANG Y P, SHI Y F, XIN G Q,
et al. Two-dimensional van der Waals epitaxy kinetics in a three-dimensional perovskite halide[J].
Crystal Growth&
Design, 2015, 15(10): 4741-4749.
|
[46] |
QUAN L N, YUAN M J, COMIN R,
et al. Ligand-stabilized reduced-dimensionality perovskites[J].
Journal of the American Chemical Society, 2016, 138(8): 2649-2655.
doi:10.1021/jacs.5b11740
|
[47] |
LENG K, FU W, LIU Y P,
et al. From bulk to molecularly thin hybrid perovskites[J].
Nature Reviews Materials, 2020, 5(7): 482-500.
doi:10.1038/s41578-020-0185-1
|
[48] |
DANG Y Y, WEI J, LIU X L,
et al. Layered hybrid perovskite solar cells based on single-crystalline precursor solutions with superior reproducibility[J].
Sustainable Energy&
Fuels, 2018, 2(10): 2237-2243.
|
[49] |
TAKEOKA Y, FUKASAWA M, MATSUI T,
et al. Intercalated formation of two-dimensional and multi-layered perovskites in organic thin films[J].
Chemical Communications, 2005(3): 378-380.
doi:10.1039/b413398f
|
[50] |
KAMMINGA M E, FANG H H, FILIP M R,
et al. Confinement effects in low-dimensional lead iodide perovskite hybrids[J].
Chemistry of Materials, 2016, 28(13): 4554-4562.
doi:10.1021/acs.chemmater.6b00809
|
[51] |
SUN SH Y, SALIM T, MATHEWS N,
et al. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells[J].
Energy&
Environmental Science, 2014, 7(1): 399-407.
|
[52] |
REN H, YU SH D, CHAO L F,
et al. Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction[J].
Nature Photonics, 2020, 14(3): 154-163.
doi:10.1038/s41566-019-0572-6
|
[53] |
SONG J X, BIAN J, ZHENG E Q,
et al. Efficient and environmentally stable perovskite solar cells based on ZnO electron collection layer[J].
Chemistry Letters, 2015, 44(5): 610-612.
doi:10.1246/cl.150056
|
[54] |
LIU Y H, AKIN S, PAN L F,
et al. Ultrahydrophobic 3D / 2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%[J].
Science Advances, 2019, 5(6): eaaw2543.
doi:10.1126/sciadv.aaw2543
|
[55] |
CHO K T, GRANCINI G, LEE Y H,
et al. Selective growth of layered perovskites for stable and efficient photovoltaics[J].
Energy&
Environmental Science, 2018, 11(4): 952-959.
|
[56] |
GRANCINI G, ROLDÁN-CARMONA C, ZIMMERMANN I,
et al. One-year stable perovskite solar cells by 2D/3D interface engineering[J].
Nature Communications, 2017, 8(1): 15684.
doi:10.1038/ncomms15684
|
[57] |
LUO T, ZHANG Y L, XU ZH,
et al. Compositional control in 2D perovskites with alternating cations in the interlayer space for photovoltaics with efficiency over 18%[J].
Advanced Materials, 2019, 31(44): 1903848.
doi:10.1002/adma.201903848
|
[58] |
PROPPE A H, WEI M Y, CHEN B,
et al. Photochemically cross-linked quantum well ligands for 2D/3D perovskite photovoltaics with improved photovoltage and stability[J].
Journal of the American Chemical Society, 2019, 141(36): 14180-14189.
doi:10.1021/jacs.9b05083
|
[59] |
WANG ZH P, LIN Q Q, CHMIEL F P,
et al. Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites[J].
Nature Energy, 2017, 2(9): 17135.
doi:10.1038/nenergy.2017.135
|
[60] |
LI P W, ZHANG Y Q, LIANG CH,
et al. Phase pure 2D perovskite for high-performance 2D-3D heterostructured perovskite solar cells[J].
Advanced Materials, 2018, 30(52): 1805323.
doi:10.1002/adma.201805323
|
[61] |
YANG R, LI R ZH, CAO Y,
et al. Oriented quasi-2D perovskites for high performance optoelectronic devices[J].
Advanced Materials, 2018, 30(51): 1804771.
doi:10.1002/adma.201804771
|
[62] |
CHEN J ZH, SEO J Y, PARK N G. Simultaneous improvement of photovoltaic performance and stability by in situ formation of 2D perovskite at (FAPbI
3)
0.88(CsPbBr
3)
0.12/CuSCN interface[J].
Advanced Energy Materials, 2018, 8(12): 1702714.
doi:10.1002/aenm.201702714
|
[63] |
LEE J W, DAI ZH H, HAN T H,
et al. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells[J].
Nature Communications, 2018, 9(1): 3021.
doi:10.1038/s41467-018-05454-4
|
[64] |
LEE D S, YUN J S, KIM J,
et al. Passivation of grain boundaries by phenethylammonium in formamidinium-methylammonium lead halide perovskite solar cells[J].
ACS Energy Letters, 2018, 3(3): 647-654.
doi:10.1021/acsenergylett.8b00121
|
[65] |
LAI H T, KAN B, LIU T T,
et al. Two-dimensional Ruddlesden-Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%[J].
Journal of the American Chemical Society, 2018, 140(37): 11639-11646.
doi:10.1021/jacs.8b04604
|
[66] |
MA CH Q, SHEN D, NG T W,
et al. 2D perovskites with short interlayer distance for high-performance solar cell application[J].
Advanced Materials, 2018, 30(22): 1800710.
doi:10.1002/adma.201800710
|
[67] |
HU Y Q, QIU T, BAI F,
et al. Highly efficient and stable solar cells with 2D MA
3Bi
2I
9/3D MAPbI
3heterostructured perovskites[J].
Advanced Energy Materials, 2018, 8(19): 1703620.
doi:10.1002/aenm.201703620
|
[68] |
WANG X T, WANG Y, ZHANG T Y,
et al. Steric mixed-cation 2D perovskite as a methylammonium locker to stabilize MAPbI
3[J].
Angewandte Chemie International Edition, 2020, 59(4): 1469-1473.
doi:10.1002/anie.201911518
|
[69] |
SHI J SH, GAO Y R, GAO X,
et al. Fluorinated low-dimensional Ruddlesden-Popper perovskite solar cells with over 17% power conversion efficiency and improved stability[J].
Advanced Materials, 2019, 31(37): 1901673.
doi:10.1002/adma.201901673
|
[70] |
ZHANG F, KIM D H, LU H P,
et al. Enhanced charge transport in 2D perovskites via fluorination of organic cation[J].
Journal of the American Chemical Society, 2019, 141(14): 5972-5979.
doi:10.1021/jacs.9b00972
|
[71] |
WANG K, LI ZH Z, ZHOU F G,
et al. Ruddlesden-Popper 2D component to stabilize γ-CsPbI
3perovskite phase for stable and efficient photovoltaics[J].
Advanced Energy Materials, 2019, 9(42): 1902529.
doi:10.1002/aenm.201902529
|
[72] |
LIN Y, BAI Y, FANG Y J,
et al. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures[J].
The Journal of Physical Chemistry Letters, 2018, 9(3): 654-658.
doi:10.1021/acs.jpclett.7b02679
|
[73] |
MA CH Y, LENG CH Q, JI Y X,
et al. 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells[J].
Nanoscale, 2016, 8(43): 18309-18314.
doi:10.1039/C6NR04741F
|
[74] |
KIM H, LEE S U, LEE D Y,
et al. Perovskite solar cells: optimal interfacial engineering with different length of alkylammonium halide for efficient and stable perovskite solar cells[J].
Advanced Energy Materials, 2019, 9(47): 1970187.
doi:10.1002/aenm.201970187
|
[75] |
ZHENG Y F, YANG X Y, SU R,
et al. High-performance CsPbI
xBr
3-xall-inorganic perovskite solar cells with efficiency over 18% via spontaneous interfacial manipulation[J].
Advanced Functional Materials, 2020: 2000457.
doi:10.1002/adfm.202000457
|
[76] |
KIM H S, SEO J Y, PARK N G. Material and device stability in perovskite solar cells[J].
ChemSusChem, 2016, 9(18): 2528-2540.
doi:10.1002/cssc.201600915
|
[77] |
SUPASAI T, RUJISAMPHAN N, ULLRICH K,
et al. Formation of a passivating CH
3NH
3PbI
3/PbI
2interface during moderate heating of CH
3NH
3PbI
3layers[J].
Applied Physics Letters, 2013, 103(18): 183906.
doi:10.1063/1.4826116
|
[78] |
ARISTIDOU N, SANCHEZ-MOLINA I, CHOTCHUANGCHUTCHAVAL T,
et al. The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers[J].
Angewandte Chemie International Edition, 2015, 54(28): 8208-8212.
doi:10.1002/anie.201503153
|
[79] |
LUO P F, XIA W, ZHOU SH W,
et al. Solvent engineering for ambient-air-processed, phase-stable CsPbI
3in perovskite solar cells[J].
The Journal of Physical Chemistry Letters, 2016, 7(18): 3603-3608.
doi:10.1021/acs.jpclett.6b01576
|
[80] |
XUE J J, LEE J W, DAI ZH H,
et al. Surface ligand management for stable FAPbI
3perovskite quantum dot solar cells[J].
Joule, 2018, 2(9): 1866-1878.
doi:10.1016/j.joule.2018.07.018
|
[81] |
FU Y P, REA M T, CHEN J,
et al. Selective stabilization and photophysical properties of metastable perovskite polymorphs of CsPbI
3in thin films[J].
Chemistry Of Materials, 2017, 29(19): 8385-8394.
doi:10.1021/acs.chemmater.7b02948
|
[82] |
WANG Q, ZHENG X P, DENG Y H,
et al. Stabilizing the
α-phase of CsPbI
3perovskite by sulfobetaine zwitterions in one-step spin-coating films[J].
Joule, 2017, 1(2): 371-382.
doi:10.1016/j.joule.2017.07.017
|
[83] |
JIANG Y ZH, YUAN J, NI Y X,
et al. Reduced-dimensional
α-CsPbX
3perovskites for efficient and stable photovoltaics[J].
Joule, 2018, 2(7): 1356-1368.
doi:10.1016/j.joule.2018.05.004
|
[84] |
RONG Y G, HU Y, MEI A Y,
et al. Challenges for commercializing perovskite solar cells[J].
Science, 2018, 361(6408): eaat8235.
doi:10.1126/science.aat8235
|
[85] |
CHEN B, YU ZH SH, LIU K,
et al. Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%[J].
Joule, 2019, 3(1): 177-190.
doi:10.1016/j.joule.2018.10.003
|
[86] |
HOKE E T, SLOTCAVAGE D J, DOHNER E R,
et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics[J].
Chemical Science, 2015, 6(1): 613-617.
doi:10.1039/C4SC03141E
|
[87] |
KIM D, JUNG H J, PARK I J,
et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites[J].
Science, 2020, 368(6487): 155-160.
doi:10.1126/science.aba3433
|
[88] |
KE W J, STOUMPOS C C, KANATZIDIS M G. “Unleaded” perovskites: status quo and future prospects of tin-based perovskite solar cells[J].
Advanced Materials, 2019, 31(47): 1803230.
doi:10.1002/adma.201803230
|
[89] |
TSAI H, NIE W Y, BLANCON J C,
et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells[J].
Nature, 2016, 536(7616): 312-316.
doi:10.1038/nature18306
|
[90] |
STOUMPOS C C, MAO L L, MALLIAKAS C D,
et al. Structure-band gap relationships in hexagonal polytypes and low-dimensional structures of hybrid tin iodide perovskites[J].
Inorganic Chemistry, 2017, 56(1): 56-73.
doi:10.1021/acs.inorgchem.6b02764
|
[91] |
CAO D H, STOUMPOS C C, YOKOYAMA T,
et al. Thin films and solar cells based on semiconducting two-dimensional Ruddlesden-Popper (CH
3(CH
2)
3NH
3)
2(CH
3NH
3)
n−1Sn
nI
3n+1perovskites[J].
ACS Energy Letters, 2017, 2(5): 982-990.
doi:10.1021/acsenergylett.7b00202
|
[92] |
WANG F, JIANG X Y, CHEN H,
et al. 2D-quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability[J].
Joule, 2018, 2(12): 2732-2743.
doi:10.1016/j.joule.2018.09.012
|
[93] |
TSAI H, ASADPOUR R, BLANCON J C,
et al. Light-induced lattice expansion leads to high-efficiency perovskite solar cells[J].
Science, 2018, 360(6384): 67-70.
doi:10.1126/science.aap8671
|
[94] |
ZHAO J J, DENG Y H, WEI H T,
et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells[J].
Science Advances, 2017, 3(11): eaao5616.
doi:10.1126/sciadv.aao5616
|
[95] |
ROLSTON N, BUSH K A, PRINTZ A D,
et al. Engineering stress in perovskite solar cells to improve stability[J].
Advanced Energy Materials, 2018, 8(29): 1802139.
doi:10.1002/aenm.201802139
|
[96] |
LUO D Y, YANG W Q, WANG ZH P,
et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells[J].
Science, 2018, 360(6396): 1442-1446.
doi:10.1126/science.aap9282
|
[97] |
GROTE C, BERGER R F. Strain tuning of tin-halide and lead-halide perovskites: a first-principles atomic and electronic structure study[J].
The Journal of Physical Chemistry C, 2015, 119(40): 22832-22837.
doi:10.1021/acs.jpcc.5b07446
|
[98] |
ZHANG L, GENG W, TONG CH J,
et al. Strain induced electronic structure variation in methyl-ammonium lead iodide perovskite[J].
Scientific Reports, 2018, 8(1): 7760.
doi:10.1038/s41598-018-25772-3
|
[99] |
ALHARBI E A, ALYAMANI A Y, KUBICKI D J,
et al. Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells[J].
Nature Communications, 2019, 10(1): 3008.
doi:10.1038/s41467-019-10985-5
|
[100] |
WANG H, ZHU CH, LIU L,
et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability[J].
Advanced Materials, 2019, 31(48): 1904408.
doi:10.1002/adma.201904408
|
[101] |
NAMVAR A, DEHGHANY M, SOHRABPOUR S,
et al. Thermal residual stresses in silicon thin film solar cells under operational cyclic thermal loading: A finite element analysis[J].
Solar Energy, 2016, 135: 366-373.
doi:10.1016/j.solener.2016.05.058
|
[102] |
LEE S M, YEON D H, MOHANTY B C,
et al. Tensile stress-dependent fracture behavior and its influences on photovoltaic characteristics in flexible PbS/CdS thin-film solar cells[J].
ACS Applied Materials&
Interfaces, 2015, 7(8): 4573-4578.
|
[103] |
AHN G H, AMANI M, RASOOL H,
et al. Strain-engineered growth of two-dimensional materials[J].
Nature Communications, 2017, 8(1): 608.
doi:10.1038/s41467-017-00516-5
|
[104] |
MURALI B, YENGEL E, PENG W,
et al. Temperature-induced lattice relaxation of perovskite crystal enhances optoelectronic properties and solar cell performance[J].
The Journal of Physical Chemistry Letters, 2017, 8(1): 137-143.
doi:10.1021/acs.jpclett.6b02684
|
[105] |
ZHU CH, NIU X X, FU Y H,
et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics[J].
Nature Communications, 2019, 10(1): 815.
doi:10.1038/s41467-019-08507-4
|
[106] |
ZHENG Y T, NIU T T, RAN X Q,
et al. Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application[J].
Journal of Materials Chemistry A, 2019, 7(23): 13860-13872.
doi:10.1039/C9TA03217G
|
[107] |
ZHANG J, QIN J J, WANG M SH,
et al. Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells[J].
Joule, 2019, 3(12): 3061-3071.
doi:10.1016/j.joule.2019.09.020
|
[108] |
ZHOU M, FEI CH B, SARMIENTO J S,
et al. Manipulating the phase distributions and carrier transfers in hybrid quasi-two-dimensional perovskite films[J].
Solar RRL, 2019, 3(4): 1800359.
doi:10.1002/solr.201800359
|
[109] |
LIU T F, JIANG Y Y, QIN M CH,
et al. Tailoring vertical phase distribution of quasi-two-dimensional perovskite films via surface modification of hole-transporting layer[J].
Nature Communications, 2019, 10(1): 878.
doi:10.1038/s41467-019-08843-5
|
[110] |
WEI J, WANG X, SUN X Y,
et al. Polymer assisted deposition of high-quality CsPbI
2Br film with enhanced film thickness and stability[J].
Nano Research, 2020, 13(3): 684-690.
doi:10.1007/s12274-020-2675-2
|
[111] |
QING J, LIU X K, LI M J,
et al. Aligned and graded type-II Ruddlesden-Popper perovskite films for efficient solar cells[J].
Advanced Energy Materials, 2018, 8(21): 1800185.
doi:10.1002/aenm.201800185
|
[112] |
LI M H, YEH H H, CHIANG Y H,
et al. Highly efficient 2D/3D hybrid perovskite solar cells via low-pressure vapor-assisted solution process[J].
Advanced Materials, 2018, 30(30): 1801401.
doi:10.1002/adma.201801401
|
[113] |
WU G B, LI X, ZHOU J Y,
et al. Fine multi-phase alignments in 2D perovskite solar cells with efficiency over 17% via slow post-annealing[J].
Advanced Materials, 2019, 31(42): 1903889.
doi:10.1002/adma.201903889
|
[114] |
GAO L G, ZHANG F, XIAO CH X,
et al. Improving charge transport via intermediate-controlled crystal growth in 2D perovskite solar cells[J].
Advanced Functional Materials, 2019, 29(47): 1901652.
doi:10.1002/adfm.201901652
|
[115] |
KE W J, MAO L L, STOUMPOS C C,
et al. Compositional and solvent engineering in Dion-Jacobson 2D perovskites boosts solar cell efficiency and stability[J].
Advanced Energy Materials, 2019, 9(10): 1803384.
doi:10.1002/aenm.201803384
|
[116] |
CHEN A Z, SHIU M, MA J H,
et al. Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance[J].
Nature Communications, 2018, 9(1): 1336.
doi:10.1038/s41467-018-03757-0
|
[117] |
ZHENG K B, CHEN Y N, SUN Y,
et al. Inter-phase charge and energy transfer in Ruddlesden-Popper 2D perovskites: critical role of the spacing cations[J].
Journal of Materials Chemistry A, 2018, 6(15): 6244-6250.
doi:10.1039/C8TA01518J
|