Citation: | ZHANG Xing-chao, PAN Rui, HAN Jia-yue, DONG Xiang, WANG Jun. Recent progress and prospects of topological quantum material-based photodetectors[J].Chinese Optics, 2021, 14(1): 43-65.doi:10.37188/CO.2020-0096 |
[1] |
ATABAKI A H, MOAZENI S, PAVANELLO F,
et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip[J].
Nature, 2018, 556(7701): 349-354.
doi:10.1038/s41586-018-0028-z
|
[2] |
王军, 蒋亚东. 室温微测辐射热计太赫兹探测阵列技术研究进展(特邀)[J]. 红外与 工程,2019,48(1):0102001.
doi:10.3788/IRLA201948.0102001
WANG J, JIANG Y D. Research development about room temperature terahertz detector array technology with microbolometer structure (invited)[J].
Infrared and Laser Engineering, 2019, 48(1): 0102001. (in Chinese)
doi:10.3788/IRLA201948.0102001
|
[3] |
张猛蛟, 蔡毅, 江峰, 等. 紫外增强硅基成像探测器进展[J]. 中国光学,2019,12(1):19-37.
doi:10.3788/co.20191201.0019
ZHANG M J, CAI Y, JIANG F,
et al. Silicon-based ultraviolet photodetection: progress and prospects[J].
Chinese Optics, 2019, 12(1): 19-37. (in Chinese)
doi:10.3788/co.20191201.0019
|
[4] |
XIA F N, MUELLER T, LIN Y M,
et al. Ultrafast graphene photodetector[J].
Nature Nanotechnology, 2009, 4(12): 839-843.
doi:10.1038/nnano.2009.292
|
[5] |
罗曼, 吴峰, 张莉丽, 等. 二维材料偏振响应光电探测[J]. 南通大学学报(自然科学版),2019,18(3):1-10.
LUO M, WU F, ZHANG L L,
et al. Detection of polarized light using two-dimensional atomic materials[J].
Journal of Nantong University(
Natural Science Edition)
|
[6] |
公爽, 田金荣, 李克轩, 等. 新型二维材料在固体 器中的应用研究进展[J]. 中国光学,2018,11(1):18-30.
doi:10.3788/co.20181101.0018
GONG SH, TIAN J R, LI K X,
et al. Advances in new two-dimensional materials and its application in solid-state lasers[J].
Chinese Optics, 2018, 11(1): 18-30. (in Chinese)
doi:10.3788/co.20181101.0018
|
[7] |
WANG F K, ZHANG Y, GAO Y,
et al. 2D metal chalcogenides for IR photodetection[J].
Small, 2019, 15(30): 1901347.
doi:10.1002/smll.201901347
|
[8] |
BULLOCK J, AMANI M, CHO J,
et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature[J].
Nature Photonics, 2018, 12(10): 601-607.
doi:10.1038/s41566-018-0239-8
|
[9] |
LI Y F, ZHANG Y T, YU Y,
et al. Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams[J].
Photonics Research, 2020, 8(3): 368-374.
doi:10.1364/PRJ.380249
|
[10] |
何珂, 薛其坤. 拓扑量子材料与量子反常霍尔效应[J]. 材料研究学报,2019,29(3):161-177.
HE K, XUE Q K. Topological quantum materials and quantum anomalous hall effect[J].
Chinese Journal of Materials Research, 2019, 29(3): 161-177. (in Chinese)
|
[11] |
崔亚宁, 任伟. 拓扑量子材料的研究进展[J]. 自然杂志,2019,41(5):348-357.
CUI Y N, REN W. Research advances of topological quantum materials[J].
Chinese Journal of Nature, 2019, 41(5): 348-357. (in Chinese)
|
[12] |
GUI X, PLETIKOSIC I, CAO H B,
et al. A new magnetic topological quantum material candidate by design[J].
ACS Central Science, 2019, 5: 900-910.
|
[13] |
ZHANG T T, JIANG Y, SONG ZH D,
et al. Catalogue of topological electronic materials[J].
Nature, 2019, 566(7745): 475-479.
doi:10.1038/s41586-019-0944-6
|
[14] |
WANG A Q, YE X G, YU D P,
et al. Topological semimetal nanostructures from properties to topotronics[J].
ACS nano, 2020, 14(4): 3755-3778.
|
[15] |
GAO H, VENDERBOS J W F, KIN Y,
et al. Topological semimetals from first principles[J].
Annual Review of Materials Research, 2019, 49: 153-83.
doi:10.1146/annurev-matsci-070218-010049
|
[16] |
WANG SH, LIN B C, Wang A Q,
et al. Quantum transport in Dirac and Weyl semimetals: a review[J].
Advances in Physics:
X, 2017, 2(3): 518-544.
doi:10.1080/23746149.2017.1327329
|
[17] |
DAS P K, DI SANTE D, CILENTO F,
et al. Electronic properties of candidate type-Ⅱ Weyl semimetal WTe
2. a review perspective[J].
Electronic Structure, 2019, 1(1): 014003.
doi:10.1088/2516-1075/ab0835
|
[18] |
SCHÜFFELGEN P, SCHMITT T, SCHLEENVOIGT M,
et al. Exploiting topological matter for Majorana physics and devices[J].
Solid-State Electronics, 2019, 155: 99-104.
doi:10.1016/j.sse.2019.03.005
|
[19] |
YUE Z J, WANG X L, GU M.
Topological Insulator Materials for Advanced Optoelectronic Devices[M]. LUO H X. Advanced Topological Insulators. Beverly, MA, USA: Scrivener Publishing LLC, 2019: 45-70.
|
[20] |
WANG H CH, WANG J. Electron transport in Dirac and Weyl semimetals[J].
Chinese Physics B, 2018, 27(10): 107402.
doi:10.1088/1674-1056/27/10/107402
|
[21] |
张玉平, 唐利斌. 拓扑绝缘体光电探测器研究进展[J]. 红外技术,2020,42(1):1-9.
ZHANG Y P, TANG L B. Research progress in photodetectors based on topological insulators[J].
Infrared Technology, 2020, 42(1): 1-9. (in Chinese)
|
[22] |
CHAN C K, LINDNER N H, REFAEL G,
et al. Photocurrents in Weyl semimetals[J].
Physical Review B, 2017, 95(4): 041104.
doi:10.1103/PhysRevB.95.041104
|
[23] |
MA J CH, DENG K, ZHENG L,
et al. Experimental progress on layered topological semimetals[J].
2D Materials, 2019, 6(3): 032001.
doi:10.1088/2053-1583/ab0902
|
[24] |
ZHE SH, RUI C, KARIM K,
et al. Two-dimensional tellurium: progress, challenges, and prospects[J].
Nano-Micro Letters, 2020, 12: 1-34.
|
[25] |
HAN J Y, WANG J. Photodetectors based on two-dimensional materials and organic thin-film heterojunctions[J].
Chinese Physics B, 2019, 28(1): 017103.
doi:10.1088/1674-1056/28/1/017103
|
[26] |
LI Y, SHI ZH F, LI X J,
et al. Photodetectors based on inorganic halide perovskites: materials and devices[J].
Chinese Physics B, 2019, 28(1): 017803.
doi:10.1088/1674-1056/28/1/017803
|
[27] |
WANG J, HAN J Y, CHEN X Q,
et al. Design strategies for two-dimensional material photodetectors to enhance device performance[J].
InfoMat, 2019, 1(1): 33-53.
doi:10.1002/inf2.12004
|
[28] |
胡伟达, 李庆, 陈效双, 等. 具有变革性特征的红外光电探测器[J]. 物理学报,2019,68(12):120701.
HU W D, LI Q, CHEN X SH,
et al. Recent progress on advanced infrared photodetectors[J].
Acta Physica Sinica, 2019, 68(12): 120701. (in Chinese)
|
[29] |
FANG Y R, GE Y Q, WANG C,
et al. Mid-infrared photonics using 2D materials: status and challenges[J].
Laser&
Photonics Reviews, 2020, 14(1): 1900098.
|
[30] |
CHEN X Q, SHEHZAD K, GAO L,
et al. Graphene hybrid structures for integrated and flexible optoelectronics[J].
Advanced Materials, 2020, 32(27): 1902039.
|
[31] |
ZHANG CH, ZHANG Y, YUAN X,
et al. Quantum hall effect based on Weyl orbits in Cd
3As
2[J].
Nature, 2019, 565(7739): 331-336.
doi:10.1038/s41586-018-0798-3
|
[32] |
TANG F D, REN Y F, WANG P P,
et al. Three-dimensional quantum hall effect and metal-insulator transition in ZrTe
5[J].
Nature, 2019, 569(7757): 537-541.
doi:10.1038/s41586-019-1180-9
|
[33] |
VERGNIORY M G, ELCORO L, FELSER C,
et al. A complete catalogue of high-quality topological materials[J].
Nature, 2019, 566(7745): 480-485.
doi:10.1038/s41586-019-0954-4
|
[34] |
TANG F, PO H C, VISHWANATH A,
et al. Comprehensive search for topological materials using symmetry indicators[J].
Nature, 2019, 566(7745): 486-489.
doi:10.1038/s41586-019-0937-5
|
[35] |
ZHANG Y, ZHANG F, XU Y G,
et al. Epitaxial growth of topological insulators on semiconductors (Bi
2Se
3/Te@Se) toward high-performance photodetectors[J].
Small Methods, 2019, 3(2): 1900349.
|
[36] |
BHATTACHARYYA B, GUPTA A, SENGUTTUVAN T D,
et al. Topological insulator based dual state photo-switch originating through bulk and surface conduction channels[J].
Physica Status Solidi(
B)
|
[37] |
CULCER D, KESER A C, LI Y Q,
et al. Transport in two-dimensional topological materials: recent developments in experiment and theory[J].
2D Materials, 2020, 7(2): 022007.
doi:10.1088/2053-1583/ab6ff7
|
[38] |
BERNEVIG B A, HUGHES T L, ZHANG SH CH. Quantum spin hall effect and topological phase transition in HgTe quantum wells[J].
Science, 2006, 314(5806): 1757-1761.
doi:10.1126/science.1133734
|
[39] |
KÖNIG M, BUHMANN H, MOLENKAMP L W,
et al. The quantum spin hall effect: theory and experiment[J].
Journal of the Physical Society of Japan, 2008, 77(3): 031007.
doi:10.1143/JPSJ.77.031007
|
[40] |
LIU CH X, HUGHES T L, QI X L,
et al. Quantum spin hall effect in inverted type-Ⅱ semiconductors[J].
Physical Review Letters, 2008, 100(23): 236601.
doi:10.1103/PhysRevLett.100.236601
|
[41] |
LIU C W, WANG ZH H, QIU R L J,
et al. Development of topological insulator and topological crystalline insulator nanostructures[J].
Nanotechnology, 2020, 31(19): 192001.
doi:10.1088/1361-6528/ab6dfc
|
[42] |
SWATEK P, WU Y, WANG L L,
et al.. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi
2Te
4[J]. arXiv: 1907.09596, 2019.
|
[43] |
LI ZH, LI J H, HE K,
et al.. Tunable interlayer magnetism and band topology in van der Waals heterostructures of MnBi
2Te
4-family materials[J]. arXiv: 2003.13485, 2020.
|
[44] |
FU L. Topological crystalline insulators[J].
Physical Review Letters, 2011, 106(10): 106802.
doi:10.1103/PhysRevLett.106.106802
|
[45] |
LI Z, SHAO S, LI N,
et al. Single crystalline nanostructures of topological crystalline insulator SnTe with distinct facets and morphologies[J].
Nano Letters, 2013, 13(11): 5443-5448.
doi:10.1021/nl4030193
|
[46] |
HSIEH T H, LIN H, LIU J W,
et al. Topological crystalline insulators in the SnTe material class[J].
Nature Communications, 2012, 3(1): 982.
doi:10.1038/ncomms1969
|
[47] |
SCHOOP L M, DAI X, CAVA R J,
et al. Special topic on topological semimetals-new directions[J].
APL Materials, 2020, 8(3): 030401.
doi:10.1063/5.0006015
|
[48] |
YAN M ZH, HUANG H Q, ZHANG K N,
et al. Lorentz-violating type-Ⅱ Dirac fermions in transition metal dichalcogenide PtTe
2[J].
Nature Communications, 2017, 8(1): 257.
doi:10.1038/s41467-017-00280-6
|
[49] |
KUSHWAHA S K, KRIZAN J W, FELDMAN B E,
et al. Bulk crystal growth and electronic characterization of the 3D Dirac semimetal Na
3Bi[J].
APL Materials, 2015, 3(4): 041504.
doi:10.1063/1.4908158
|
[50] |
HUANG C, ZHOU B T, ZHANG H Q,
et al. Proximity-induced surface superconductivity in Dirac semimetal Cd
3As
2[J].
Nature Communications, 2019, 10(1): 2217.
doi:10.1038/s41467-019-10233-w
|
[51] |
GUO J, HUANG Y, WU X SH,
et al. Thickness-dependent in-plane thermal conductivity and enhanced thermoelectric performance in p-Type ZrTe
5nanoribbons[J].
Physica Status Solidi(
RRL)
-Rapid Research Letters, 2019, 13(3): 1800529.
doi:10.1002/pssr.201800529
|
[52] |
LV B Q, WENG H M, FU B B,
et al. Experimental discovery of Weyl semimetal TaAs[J].
Physical Review X, 2015, 5(3): 031013.
doi:10.1103/PhysRevX.5.031013
|
[53] |
SUN Y, WU SH CH, YAN B H. Topological surface states and Fermi arcs of the noncentrosymmetric Weyl semimetals TaAs, TaP, NbAs, and NbP[J].
Physical Review B, 2015, 92(11): 115428.
doi:10.1103/PhysRevB.92.115428
|
[54] |
ZHANG CH, NI ZH L, ZHANG J L,
et al. Ultrahigh conductivity in Weyl semimetal NbAs nanobelts[J].
Nature Materials, 2019, 18(5): 482-488.
doi:10.1038/s41563-019-0320-9
|
[55] |
SOLUYANOV A A, GRESCH D, WANG ZH J,
et al. Type-Ⅱ Weyl semimetals[J].
Nature, 2015, 527(7579): 495-498.
doi:10.1038/nature15768
|
[56] |
DENG K, WAN G L, DENG P,
et al. Experimental observation of topological Fermi arcs in type-Ⅱ Weyl semimetal MoTe
2[J].
Nature Physics, 2016, 12(12): 1105-1110.
doi:10.1038/nphys3871
|
[57] |
MA J CH, GU Q Q, LIU Y N,
et al. Nonlinear photoresponse of type-Ⅱ Weyl semimetals[J].
Nature Materials, 2019, 18(5): 476-481.
doi:10.1038/s41563-019-0296-5
|
[58] |
ZHANG X, WANG J, ZHANG SH CH. Topological insulators for high-performance terahertz to infrared applications[J].
Physical Review B, 2010, 82(24): 245107.
doi:10.1103/PhysRevB.82.245107
|
[59] |
YAN Y, LIAO ZH M, KE X X,
et al. Topological surface state enhanced photothermoelectric effect in Bi
2Se
3nanoribbons[J].
Nano Letters, 2014, 14(8): 4389-4394.
doi:10.1021/nl501276e
|
[60] |
SHARMA A, BHATTACHARYYA B, SRIVASTAVA A K,
et al. High performance broadband photodetector using fabricated nanowires of bismuth selenide[J].
Scientific Reports, 2016, 6(1): 19138.
doi:10.1038/srep19138
|
[61] |
LIU CH, ZHANG H B, SUN ZH,
et al. Topological insulator Bi
2Se
3nanowire/Si heterostructure photodetectors with ultrahigh responsivity and broadband response[J].
Journal of Materials Chemistry C, 2016, 4(24): 5648-5655.
doi:10.1039/C6TC01083K
|
[62] |
DAS B, DAS N S, SARKAR S,
et al. Topological insulator Bi
2Se
3/Si-nanowire-based p-n junction diode for high-performance near-infrared photodetector[J].
ACS Applied Materials&
Interfaces, 2017, 9(27): 22788-22798.
|
[63] |
ZHENG W SH, XIE T, ZHOU Y,
et al. Patterning two-dimensional chalcogenide crystals of Bi
2Se
3and In
2Se
3and efficient photodetectors[J].
Nature Communications, 2015, 6(1): 6972.
doi:10.1038/ncomms7972
|
[64] |
TANG W W, POLITANO A, GUO CH,
et al. Ultrasensitive room-temperature terahertz direct detection based on a bismuth Selenide topological insulator[J].
Advanced Functional Materials, 2018, 28(31): 1801786.
doi:10.1002/adfm.201801786
|
[65] |
KIM J, PARK S, JANG H,
et al. Highly sensitive, gate-tunable, room-temperature mid-infrared photodetection based on graphene-Bi
2Se
3heterostructure[J].
ACS Photonics, 2017, 4(3): 482-488.
doi:10.1021/acsphotonics.6b00972
|
[66] |
YANG M, HAN Q, LIU X CH,
et al. Ultrahigh stability 3D TI Bi
2Se
3/MoO
3thin film Heterojunction infrared Photodetector at optical communication waveband[J].
Advanced Functional Materials, 2020, 30(12): 1909659.
doi:10.1002/adfm.201909659
|
[67] |
TANG Y X, JIANG T, ZHOU T,
et al. Ultrafast exciton transfer in perovskite CsPbBr
3quantum dots/topological insulator Bi
2Se
3film heterostructure[J].
Nanotechnology, 2019, 30(32): 325702.
doi:10.1088/1361-6528/ab166f
|
[68] |
LIANG F X, LAING L, ZHAO X Y,
et al. A sensitive broadband (UV-vis-NIR) perovskite photodetector using topological insulator as electrodes[J].
Advanced Optical Materials, 2019, 7(4): 1801392.
|
[69] |
YAO J D, SHAO J M, LI S W,
et al. Polarization dependent photocurrent in the Bi
2Te
3topological insulator film for multifunctional photodetection[J].
Scientific Reports, 2015, 5(1): 14184.
doi:10.1038/srep14184
|
[70] |
YAO J D, ZHENG ZH Q, YANG G W. Layered-material WS
2/topological insulator Bi
2Te
3heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm[J].
Journal of Materials Chemistry C, 2016, 4(33): 7831-7840.
doi:10.1039/C6TC01453D
|
[71] |
YAO J D, ZHENG ZH Q, YANG G W. All-layered 2D optoelectronics: a high-performance UV-vis-NIR broadband SnSe Photodetector with Bi
2Te
3topological insulator electrodes[J].
Advanced Functional Materials, 2017, 27(33): 1701823.
doi:10.1002/adfm.201701823
|
[72] |
YANG M, WANG J, ZHAO Y F,
et al. Three-dimensional topological insulator Bi
2Te
3/Organic thin film heterojunction photodetector with fast and wideband response from 450 to 3500 nanometers[J].
ACS Nano, 2018, 13(1): 755-763.
|
[73] |
YANG M, WANG J, ZHAO Y F,
et al. Polarimetric three-dimensional topological insulators/organics thin film heterojunction photodetectors[J].
ACS Nano, 2019, 13(9): 10810-10817.
doi:10.1021/acsnano.9b05775
|
[74] |
SHARMA A, SENGUTTUVAN T D, OJHA V N,
et al. Novel synthesis of topological insulator based nanostructures (Bi
2Te
3) demonstrating high performance photodetection[J].
Scientific Reports, 2019, 9(1): 3804.
doi:10.1038/s41598-019-40394-z
|
[75] |
QIAO H, YUAN J, XU Z Q,
et al. Broadband photodetectors based on graphene-Bi
2Te
3heterostructure[J].
ACS Nano, 2015, 9(2): 1886-1894.
doi:10.1021/nn506920z
|
[76] |
LIU H W, ZHU X L, SUN X X,
et al. Self-powered broad-band photodetectors based on vertically stacked WSe
2/Bi
2Te
3
p-nheterojunctions[J].
ACS Nano, 2019, 13(11): 13573-13580.
doi:10.1021/acsnano.9b07563
|
[77] |
ZHENG K, LUO L B, ZHANG T F,
et al. Optoelectronic characteristics of a near infrared light photodetector based on a topological insulator Sb
2Te
3film[J].
Journal of Materials Chemistry C, 2015, 3(35): 9154-9160.
doi:10.1039/C5TC01772F
|
[78] |
SUN H H, JIANG T, ZANG Y Y,
et al. Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb
2Te
3/STO heterostructures[J].
Nanoscale, 2017, 9(27): 9325-9332.
doi:10.1039/C7NR01715D
|
[79] |
LIU H W, LI D, MA CH,
et al. Van der Waals epitaxial growth of vertically stacked Sb
2Te
3/MoS
2p–n heterojunctions for high performance optoelectronics[J].
Nano Energy, 2019, 59: 66-74.
doi:10.1016/j.nanoen.2019.02.032
|
[80] |
HUANG S M, HUANG S J, YAN Y J,
et al. Extremely high-performance visible light photodetector in the Sb
2SeTe
2nanoflake[J].
Scientific Reports, 2017, 7(1): 45413.
doi:10.1038/srep45413
|
[81] |
AHER R, BHORDE A, NAIR S,
et al. Solvothermal growth of PbBi
2Se
4nano-flowers: a material for humidity sensor and photodetector applications[J].
Physica Status Solidi(
A)
|
[82] |
SAFDAR M, WANG Q SH, MIRZA M,
et al. Topological surface transport properties of single-crystalline SnTe nanowire[J].
Nano Letters, 2013, 13(11): 5344-5349.
doi:10.1021/nl402841x
|
[83] |
JIANG T, ZANG Y Y, SUN H H. Broadband high-responsivity photodetectors based on large-scale topological crystalline insulator SnTe ultrathin film grown by molecular beam epitaxy[J].
Advanced Optical Materials, 2017, 5(5): 1600727.
doi:10.1002/adom.201600727
|
[84] |
YANG J, YU W ZH, PAN ZH H,
et al. Ultra-broadband flexible photodetector based on topological crystalline insulator SnTe with high responsivity[J].
Small, 2018, 14(37): 1802598.
doi:10.1002/smll.201802598
|
[85] |
GU S H, DING K, PAN J,
et al. Self-driven, broadband and ultrafast photovoltaic detectors based on topological crystalline insulator SnTe/Si heterostructures[J].
Journal of Materials Chemistry A, 2017, 5(22): 11171-11178.
doi:10.1039/C7TA02222K
|
[86] |
ZHANG H B, MAN B Y, ZHANG Q. Topological crystalline insulator SnTe/Si vertical heterostructure photodetectors for high-performance near-infrared detection[J].
ACS Applied Materials&
Interfaces, 2017, 9(16): 14067-14077.
|
[87] |
ZHANG H B, SONG Z L, LI D,
et al. Near-infrared photodetection based on topological insulator P-N heterojunction of SnTe/Bi
2Se
3[J].
Applied Surface Science, 2020, 509: 145290.
doi:10.1016/j.apsusc.2020.145290
|
[88] |
CONTE A M, PULCI O, BECHSTEDT F. Electronic and optical properties of topological semimetal Cd
3As
2[J].
Scientific Reports, 2017, 7(1): 45500.
doi:10.1038/srep45500
|
[89] |
WANG Q SH, LI C ZH, GE SH F,
et al. Ultrafast broadband photodetectors based on three-dimensional Dirac semimetal Cd
3As
2[J].
Nano Letters, 2017, 17(2): 834-841.
doi:10.1021/acs.nanolett.6b04084
|
[90] |
YAVARISHAD N, HOSSEINI T, KHEIRANDISH E,
et al. Room-temperature self-powered energy photodetector based on optically induced Seebeck effect in Cd
3As
2[J].
Applied Physics Express, 2017, 10(5): 052201.
doi:10.7567/APEX.10.052201
|
[91] |
HUANG Z H, JIANG Y D, HAN Q,
et al. High responsivity and fast UV-Vis-SWIR photodetector based on Cd
3As
2/MoS
2heterojunction[J].
Nanotechnology, 2019, 31(6): 064001.
|
[92] |
WU Y F, ZHANG L, LI C ZH,
et al. Dirac semimetal heterostructures: 3D Cd
3As
2on 2D Graphene[J].
Advanced Materials, 2018, 30(34): 1707547.
doi:10.1002/adma.201707547
|
[93] |
YANG M, WANG J, HAN J Y,
et al. Enhanced performance of wideband room temperature photodetector based on Cd
3As
2thin film/Pentacene heterojunction[J].
ACS Photonics, 2018, 5(8): 3438-3445.
doi:10.1021/acsphotonics.8b00727
|
[94] |
YANG M, WANG J, YANG Y K,
et al. Ultraviolet to long-wave infrared photodetectors based on a three- dimensional Dirac semimetal/organic thin film heterojunction[J].
The Journal of Physical Chemistry Letters, 2019, 10(14): 3914-3921.
doi:10.1021/acs.jpclett.9b01619
|
[95] |
LÉONARD F, YU W L, COLLINS K C,
et al. Strong photothermoelectric response and contact reactivity of the Dirac semimetal ZrTe
5[J].
ACS Applied Materials&
Interfaces, 2017, 9(42): 37041-37047.
|
[96] |
YU X CH, YU P, WU D,
et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor[J].
Nature Communications, 2018, 9(1): 1545.
doi:10.1038/s41467-018-03935-0
|
[97] |
XU H, GUO CH, ZHANG J ZH,
et al. PtTe
2-based type-Ⅱ dirac semimetal and its van der waals heterostructure for sensitive room temperature terahertz photodetection[J].
Small, 2019, 15(52): 1903362.
doi:10.1002/smll.201903362
|
[98] |
CHI SH M, LI ZH L, XIE Y,
et al. A wide-range photosensitive Weyl semimetal single crystal-TaAs[J].
Advanced Materials, 2018, 30(43): 1801372-1801379.
doi:10.1002/adma.201801372
|
[99] |
OSTERHOUDT G B, DIEBEL L K, GRAY M J,
et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal[J].
Nature Materials, 2019, 18(5): 471-475.
doi:10.1038/s41563-019-0297-4
|
[100] |
LAI J W, LIU X, MA J CH,
et al. Anisotropic broadband photoresponse of layered type-Ⅱ Weyl semimetal MoTe
2[J].
Advanced Materials, 2018, 30(22): 1707152-1707159.
doi:10.1002/adma.201707152
|
[101] |
WANG Q SH, ZHENG J CH, HE Y,
et al. Robust edge photocurrent response on layered type Ⅱ Weyl semimetal WTe
2[J].
Nature Communications, 2019, 10(1): 5736.
doi:10.1038/s41467-019-13713-1
|
[102] |
ZHOU W, CHEN J ZH, GAO H,
et al. Anomalous and polarization-sensitive photoresponse of T
d-WTe
2from visible to infrared light[J].
Advanced Materials, 2019, 31(5): 1804629-1804636.
doi:10.1002/adma.201804629
|
[103] |
LAI J W, LIU Y N, MA J CH,
et al. Broadband anisotropic photoresponse of the “hydrogen atom” version type-Ⅱ Weyl semimetal candidate TaIrTe[J].
ACS Nano, 2018, 12(4): 4055-4061.
doi:10.1021/acsnano.8b01897
|
[104] |
LU ZH J, XU Y, YU Y Q,
et al. Ultrahigh speed and broadband few-layer MoTe
2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition[J].
Advanced Functional Materials, 2020, 30(9): 1907951.
doi:10.1002/adfm.201907951
|
[105] |
CHEN W J, LIANG R R, ZHANG SH Q,
et al. Ultrahigh sensitive near-infrared photodetectors based on MoTe
2/germanium heterostructure[J].
Nano Research, 2020, 13(1): 127-132.
doi:10.1007/s12274-019-2583-5
|
[106] |
YU W ZH, LI SH J, ZHANG Y P,
et al. Near-infrared photodetectors based on MoTe
2/graphene heterostructure with high responsivity and flexibility[J].
Small, 2017, 13(24): 1700268.
doi:10.1002/smll.201700268
|
[107] |
LIU Y J, LIU CH, WANG X M,
et al. Photoresponsivity of an all-semimetal heterostructure based on graphene and WTe
2[J].
Scientific Reports, 2018, 8(1): 12840.
doi:10.1038/s41598-018-29717-8
|
[108] |
LU M Y, CHANG Y T, CHEN H J. Efficient self-driven photodetectors featuring a mixed-dimensional van der waals heterojunction formed from a CdS nanowire and a MoTe
2flake[J].
Small, 2018, 14(40): 1802302.
doi:10.1002/smll.201802302
|
[109] |
MAKINO K, KUROMIYA S, TAKANO K,
et al. THz pulse detection by multilayered GeTe/Sb
2Te
3[J].
ACS Applied Materials&
Interfaces, 2016, 8(47): 32408-32413.
|
[110] |
WANG X T, CUI Y, LI T,
et al. Recent advances in the functional 2D photonic and optoelectronic devices[J].
Advanced Optical Materials, 2019, 7(3): 1801274.
doi:10.1002/adom.201801274
|
[111] |
ROGALSKI A, KOPYTKO M, MARTYNIUK P. Two-dimensional infrared and terahertz detectors: outlook and status[J].
Applied Physics Reviews, 2019, 6(2): 021316.
doi:10.1063/1.5088578
|
[112] |
杨旗, 申钧, 魏兴战, 等. 基于石墨烯的红外探测机理与器件结构研究进展[J]. 红外与 工程,2020,49(1):0103003.
YANG Q, SHEN J, WEI X ZH,
et al. Recent progress on the mechanism and device structure of graphene-based infrared detectors[J].
Infrared and Laser Engineering, 2020, 49(1): 0103003. (in Chinese)
|
[113] |
YE L, LI H, CHEN Z F,
et al. Near-infrared photodetector based on MoS
2/Black phosphorus heterojunction[J].
ACS Photonics, 2016, 3(4): 692-699.
doi:10.1021/acsphotonics.6b00079
|
[114] |
HUANG ZH ZH, ZHANG T F, LIU J K,
et al. Amorphous MoS
2photodetector with ultra-broadband response[J].
ACS Applied Electronic Materials, 2019, 1(7): 1314-1321.
doi:10.1021/acsaelm.9b00247
|
[115] |
ZHU W K, YAN F G, WEI X,
et al. Broadband and fast photodetectors based on multilayer p-MoTe
2/n-WS
2heterojunction with graphene electrodes[J].
Advanced Materials Letters, 2019, 10(5): 329-333.
doi:10.5185/amlett.2019.2281
|
[116] |
TSAI T H, LIANG ZH Y, LIN Y CH,
et al. Photogating WS
2photodetectors using embedded WSe
2charge puddles[J].
ACS Nano, 2020, 14(4): 4559-4566.
doi:10.1021/acsnano.0c00098
|
[117] |
SUN J CH, WANG Y Y, GUO SH Q,
et al. Lateral 2D WSe
2p–n homojunction formed by efficient charge-carrier-type modulation for high-performance optoelectronics[J].
Advanced Materials, 2020, 32(9): 1906499.
doi:10.1002/adma.201906499
|
[118] |
ZHENG ZH Q, ZHANG T M, YAO J D,
et al. Flexible, transparent and ultra-broadband photodetector based on large-area WSe
2film for wearable devices[J].
Nanotechnology, 2016, 27(22): 225501.
doi:10.1088/0957-4484/27/22/225501
|
[119] |
DU Y P, BO X Y, WANG D,
et al. Emergence of topological nodal lines and type-Ⅱ Weyl nodes in the strong spin-orbit coupling system InNb
X
2(
X=S, Se)[J].
Physical Review B, 2017, 96(23): 235152.
doi:10.1103/PhysRevB.96.235152
|
[120] |
YUAN Y F, WANG W K, ZHOU Y H,
et al. Pressure-induced superconductivity in topological semimetal candidate TaTe
4[J].
Advanced Electronic Materials, 2020, 6(3): 1901260.
doi:10.1002/aelm.201901260
|