Citation: | JIANG Yong, LIAO Wei, WANG Bi-yi, ZHAO Wan-li, LIU Qiang-hu, QIU Rong, GUO De-cheng, ZHOU Lei, ZHOU Qiang, ZHANG Yuan-heng. Light modulation performance control of the coating on the repaired damage sites in fused silica surface[J].Chinese Optics, 2021, 14(3): 552-559.doi:10.37188/CO.2020-0110 |
[1] |
董家宁, 范杰, 王海珠, 等. 高反射光学薄膜 损伤研究进展[J]. 中国光学,2018,11(6):931-948.
doi:10.3788/co.20181106.0931
DONG J N, FAN J, WANG H ZH,
et al. Research progress in laser damage of high reflective optical thin films[J].
Chinese Optics, 2018, 11(6): 931-948. (in Chinese)
doi:10.3788/co.20181106.0931
|
[2] |
王超, 张一杨, 张雅静, 等. 掺Yb
3+石英玻璃中非桥氧空穴缺陷特性的研究[J]. 发光学报,2018,39(10):1359-1364.
doi:10.3788/fgxb20183910.1359
WANG CH, ZHANG Y Y, ZHANG Y J,
et al. Characteristics of non-bridging oxygen hole centers defects in Yb
3+-doped silica glass[J].
Chinese Journal of Luminescence, 2018, 39(10): 1359-1364. (in Chinese)
doi:10.3788/fgxb20183910.1359
|
[3] |
BETTI R, HURRICANE O A. Inertial-confinement fusion with lasers[J].
Nature Physics, 2016, 12(5): 435-448.
doi:10.1038/nphys3736
|
[4] |
ZHENG W G, WEI X F, ZHU Q H,
et al. Laser performance of the SG-III laser facility[J].
High Power Laser Science and Engineering, 2016, 4: e21.
doi:10.1017/hpl.2016.20
|
[5] |
王玺, 李志明, 谢运涛, 等. 紫外准分子 损伤典型光学材料的特性分析[J]. 发光学报,2018,39(5):692-698.
doi:10.3788/fgxb20183905.0692
WANG X, LI ZH M, XIE Y T,
et al. Characteristics of typical optical materials damaged by ultraviolet excimer laser[J].
Chinese Journal of Luminescence, 2018, 39(5): 692-698. (in Chinese)
doi:10.3788/fgxb20183905.0692
|
[6] |
田润妮, 邱荣, 蒋勇, 等. 熔石英亚表面球形杂质对入射光场的调制作用[J]. 光学学报,2015,35(4):0414003.
doi:10.3788/AOS201535.0414003
TIAN R N, QIU R, JIANG Y,
et al. Light field modulation induced by spherical inclusion in fused silica subsurface[J].
Acta Optica Sinica, 2015, 35(4): 0414003. (in Chinese)
doi:10.3788/AOS201535.0414003
|
[7] |
CHENG X B, ZHANG J L, DING T,
et al. The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses[J].
Light:
Science&
Applications, 2013, 2(6): e80.
|
[8] |
ZHU ZH W, CHENG X G, HUANG L J,
et al. Light field intensification induced by nanoinclusions in optical thin-films[J].
Applied Surface Science, 2012, 258(12): 5126-5130.
doi:10.1016/j.apsusc.2012.01.145
|
[9] |
孙晓艳, 雷泽民, 卢兴强, 等. 表面颗粒污染物诱导薄光学元件初始损伤的机理[J]. 物理学报,2014,63(13):134201.
SUN X Y, LEI Z M, LU X Q,
et al. Mechanism of original damage of thin optical components induced by surface particle contamination[J].
Acta Physica Sinica, 2014, 63(13): 134201. (in Chinese)
|
[10] |
CHENG J, CHEN M J, LIAO W,
et al. Influence of surface cracks on laser-induced damage resistance of brittle KH
2PO
4crystal[J].
Optics Express, 2014, 22(23): 28740-28755.
doi:10.1364/OE.22.028740
|
[11] |
GÉNIN F Y, SALLEO A, PISTOR T V,
et al. Role of light intensification by cracks in optical breakdown on surfaces[J].
Journal of the Optical Society of America A, 2001, 18(10): 2607-2616.
doi:10.1364/JOSAA.18.002607
|
[12] |
FEIGENBAUM E, ELHADJ S, MATTHEWS J M. Light scattering from laser induced pit ensembles on high power laser optics[J].
Optics Express, 2015, 23(8): 10589-10597.
doi:10.1364/OE.23.010589
|
[13] |
ZHENG Y, MA P, LI H B,
et al. Studies on transmitted beam modulation effect from laser induced damage on fused silica optics[J].
Optics Express, 2013, 21(14): 16605-16614.
doi:10.1364/OE.21.016605
|
[14] |
HARRIS C D, SHEN N, RUBENCHIK A M,
et al. Characterization of laser-induced plasmas associated with energetic laser cleaning of metal particles on fused silica surfaces[J].
Optics Letter, 2015, 40(22): 5212-5215.
doi:10.1364/OL.40.005212
|
[15] |
CORMONT P, COMBIS P, GALLAIS L,
et al. Removal of scratches on fused silica optics by using a CO
2laser[J].
Optics Express, 2013, 21(23): 28272-28289.
doi:10.1364/OE.21.028272
|
[16] |
LIU CH M, YAN ZH H, YANG L,
et al. Mitigation scratch on fused silica optics using CO
2laser[J].
Optica Applicata, 2016, 46(3): 387-397.
|
[17] |
CORMONT P, BOURGEADE A, CAVARO S,
et al. Relevance of carbon dioxide laser to remove scratches on large fused silica polished optics[J].
Advanced Engineering Materials, 2015, 17(3): 253-259.
doi:10.1002/adem.201400383
|
[18] |
JIANG Y, XIANG X, LIU CH M,
et al. Two localized CO
2laser treatment methods for mitigation of UV damage growth in fused silica[J].
Chinese Physics B, 2012, 21(6): 064219.
doi:10.1088/1674-1056/21/6/064219
|
[19] |
JIANG Y, LIU CH M, LUO CH S,
et al. Mitigation of laser damage growth in fused silica by using a non-evaporative technique[J].
Chinese Physics B, 2012, 21(5): 054216.
doi:10.1088/1674-1056/21/5/054216
|
[20] |
DOUALLE T, GALLAIS L, MONNERET S,
et al. CO
2laser microprocessing for laser damage growth mitigation of fused silica optics[J].
Optical Engineering, 2016, 56(1): 011022.
|
[21] |
白阳, 张丽娟, 廖威, 等. 熔石英损伤修复坑下游光场调制的数值模拟与实验研究[J]. 物理学报,2016,65(2):024205.
doi:10.7498/aps.65.024205
BAI Y, ZHANG L J, LIAO W,
et al. Study of downstream light intensity modulation induced by mitigated damage pits of fused silica using numerical simulation and experimental measurements[J].
Acta Physica Sinica, 2016, 65(2): 024205. (in Chinese)
doi:10.7498/aps.65.024205
|
[22] |
GAO X, JIANG Y, QIU R,
et al. Effect of the repaired damage morphology of fused silica on the modulation of incident laser[J].
Optical Materials, 2017, 64: 295-301.
doi:10.1016/j.optmat.2016.12.032
|
[23] |
LIAO W, LI B, ZHOU Q Y,
et al. Optical modulation study of repaired damage morphologies of fused silica by scalar diffraction theory[J].
Optical Engineering, 2017, 56(1): 016113.
doi:10.1117/1.OE.56.1.016113
|
[24] |
蒋勇, 向霞, 刘春明, 等. 熔石英表面损伤修复点上烧蚀碎片的分类与去除的研究[J]. 中国 ,2012,39(12):1203003.
doi:10.3788/CJL201239.1203003
JIANG Y, XIANG X, LIU CH M,
et al. Classification and elimination of ablation debris on the mitigated damage site in fused silica surface[J].
Chinese Journal of Lasers, 2012, 39(12): 1203003. (in Chinese)
doi:10.3788/CJL201239.1203003
|
[25] |
蒋勇. 熔石英光学元件表面损伤修复的理论和实验研究[D]. 成都: 电子科技大学, 2012: 173-179.
JIANG Y. Theoretical and experimental studies on surface damage repaire of fused silica optical components[D]. Chengdu: University of Electronic Science and Technology of China, 2012: 173-179. (in Chinese).
|
[26] |
GUSS G, BASS I, DRAGGOO V,
et al. Mitigation of growth of laser initiated surface damage in fused silica using a 4.6-micron wavelength laser[J].
Proceedings of SPIE, 2007, 6403: 64030M.
|
[27] |
JIANG Y, MU X Y, QIU R,
et al. Comparison of bare and sol-gel coated of mitigated site on fused silica[J].
Proceedings of SPIE, 2015, 9543: 95430M.
doi:10.1117/12.2177808
|