Volume 14Issue 3
May 2021
Turn off MathJax
Article Contents
JIANG Yong, LIAO Wei, WANG Bi-yi, ZHAO Wan-li, LIU Qiang-hu, QIU Rong, GUO De-cheng, ZHOU Lei, ZHOU Qiang, ZHANG Yuan-heng. Light modulation performance control of the coating on the repaired damage sites in fused silica surface[J]. Chinese Optics, 2021, 14(3): 552-559. doi: 10.37188/CO.2020-0110
Citation: JIANG Yong, LIAO Wei, WANG Bi-yi, ZHAO Wan-li, LIU Qiang-hu, QIU Rong, GUO De-cheng, ZHOU Lei, ZHOU Qiang, ZHANG Yuan-heng. Light modulation performance control of the coating on the repaired damage sites in fused silica surface[J].Chinese Optics, 2021, 14(3): 552-559.doi:10.37188/CO.2020-0110

Light modulation performance control of the coating on the repaired damage sites in fused silica surface

doi:10.37188/CO.2020-0110
Funds:Supported by National Natural Science Foundation of China (No. 11972313, No. 61775235, No. 61705205, No. 61505170); National Defense Basic Scientific Research Project (No. JCKY2020210C005), Sichuan University Students’ Innovation and Entrepreneurship Training Program (No. s202010619071, No. s201910619039) and Longshan Talent Program of Southwest University of science and Technology (No. 18lzx516)
More Information
  • Corresponding author:y_jiang@swust.edu.cn
  • Received Date:29 Jun 2020
  • Rev Recd Date:27 Jul 2020
  • Available Online:07 Dec 2020
  • Publish Date:14 May 2021
  • In order to address the light modulation problem on repaired spots created after using a CO 2laser to repair the damage in fused silica surface, we research the change of the profile and the modulation of the repaired sites before and after coating them with antireflective film. The influence of the depth and width of the repaired site on the deposition of the colloid are discussed, with some attention also given to the influence of the modulation effect. The results indicate that the colloidal material significantly enriches the pits of a repair, which can effectively improve their topographic dimensions with regards to their depth. The maximum modulation locations of a repaired site will increase after being coated with the antireflective film. However, the maximum modulation caused by the repaired site is much smaller than that of the corresponding uncoated repaired point. The results of this study can provide a reference for further optimization of repair processes and light modulation regime control of the surface damage sites on fused silica.

  • loading
  • [1]
    董家宁, 范杰, 王海珠, 等. 高反射光学薄膜 损伤研究进展[J]. 中国光学,2018,11(6):931-948. doi:10.3788/co.20181106.0931

    DONG J N, FAN J, WANG H ZH, et al. Research progress in laser damage of high reflective optical thin films[J]. Chinese Optics, 2018, 11(6): 931-948. (in Chinese) doi:10.3788/co.20181106.0931
    [2]
    王超, 张一杨, 张雅静, 等. 掺Yb 3+石英玻璃中非桥氧空穴缺陷特性的研究[J]. 发光学报,2018,39(10):1359-1364. doi:10.3788/fgxb20183910.1359

    WANG CH, ZHANG Y Y, ZHANG Y J, et al. Characteristics of non-bridging oxygen hole centers defects in Yb 3+-doped silica glass[J]. Chinese Journal of Luminescence, 2018, 39(10): 1359-1364. (in Chinese) doi:10.3788/fgxb20183910.1359
    [3]
    BETTI R, HURRICANE O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 2016, 12(5): 435-448. doi:10.1038/nphys3736
    [4]
    ZHENG W G, WEI X F, ZHU Q H, et al. Laser performance of the SG-III laser facility[J]. High Power Laser Science and Engineering, 2016, 4: e21. doi:10.1017/hpl.2016.20
    [5]
    王玺, 李志明, 谢运涛, 等. 紫外准分子 损伤典型光学材料的特性分析[J]. 发光学报,2018,39(5):692-698. doi:10.3788/fgxb20183905.0692

    WANG X, LI ZH M, XIE Y T, et al. Characteristics of typical optical materials damaged by ultraviolet excimer laser[J]. Chinese Journal of Luminescence, 2018, 39(5): 692-698. (in Chinese) doi:10.3788/fgxb20183905.0692
    [6]
    田润妮, 邱荣, 蒋勇, 等. 熔石英亚表面球形杂质对入射光场的调制作用[J]. 光学学报,2015,35(4):0414003. doi:10.3788/AOS201535.0414003

    TIAN R N, QIU R, JIANG Y, et al. Light field modulation induced by spherical inclusion in fused silica subsurface[J]. Acta Optica Sinica, 2015, 35(4): 0414003. (in Chinese) doi:10.3788/AOS201535.0414003
    [7]
    CHENG X B, ZHANG J L, DING T, et al. The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses[J]. Light: Science& Applications, 2013, 2(6): e80.
    [8]
    ZHU ZH W, CHENG X G, HUANG L J, et al. Light field intensification induced by nanoinclusions in optical thin-films[J]. Applied Surface Science, 2012, 258(12): 5126-5130. doi:10.1016/j.apsusc.2012.01.145
    [9]
    孙晓艳, 雷泽民, 卢兴强, 等. 表面颗粒污染物诱导薄光学元件初始损伤的机理[J]. 物理学报,2014,63(13):134201.

    SUN X Y, LEI Z M, LU X Q, et al. Mechanism of original damage of thin optical components induced by surface particle contamination[J]. Acta Physica Sinica, 2014, 63(13): 134201. (in Chinese)
    [10]
    CHENG J, CHEN M J, LIAO W, et al. Influence of surface cracks on laser-induced damage resistance of brittle KH 2PO 4crystal[J]. Optics Express, 2014, 22(23): 28740-28755. doi:10.1364/OE.22.028740
    [11]
    GÉNIN F Y, SALLEO A, PISTOR T V, et al. Role of light intensification by cracks in optical breakdown on surfaces[J]. Journal of the Optical Society of America A, 2001, 18(10): 2607-2616. doi:10.1364/JOSAA.18.002607
    [12]
    FEIGENBAUM E, ELHADJ S, MATTHEWS J M. Light scattering from laser induced pit ensembles on high power laser optics[J]. Optics Express, 2015, 23(8): 10589-10597. doi:10.1364/OE.23.010589
    [13]
    ZHENG Y, MA P, LI H B, et al. Studies on transmitted beam modulation effect from laser induced damage on fused silica optics[J]. Optics Express, 2013, 21(14): 16605-16614. doi:10.1364/OE.21.016605
    [14]
    HARRIS C D, SHEN N, RUBENCHIK A M, et al. Characterization of laser-induced plasmas associated with energetic laser cleaning of metal particles on fused silica surfaces[J]. Optics Letter, 2015, 40(22): 5212-5215. doi:10.1364/OL.40.005212
    [15]
    CORMONT P, COMBIS P, GALLAIS L, et al. Removal of scratches on fused silica optics by using a CO 2laser[J]. Optics Express, 2013, 21(23): 28272-28289. doi:10.1364/OE.21.028272
    [16]
    LIU CH M, YAN ZH H, YANG L, et al. Mitigation scratch on fused silica optics using CO 2laser[J]. Optica Applicata, 2016, 46(3): 387-397.
    [17]
    CORMONT P, BOURGEADE A, CAVARO S, et al. Relevance of carbon dioxide laser to remove scratches on large fused silica polished optics[J]. Advanced Engineering Materials, 2015, 17(3): 253-259. doi:10.1002/adem.201400383
    [18]
    JIANG Y, XIANG X, LIU CH M, et al. Two localized CO 2laser treatment methods for mitigation of UV damage growth in fused silica[J]. Chinese Physics B, 2012, 21(6): 064219. doi:10.1088/1674-1056/21/6/064219
    [19]
    JIANG Y, LIU CH M, LUO CH S, et al. Mitigation of laser damage growth in fused silica by using a non-evaporative technique[J]. Chinese Physics B, 2012, 21(5): 054216. doi:10.1088/1674-1056/21/5/054216
    [20]
    DOUALLE T, GALLAIS L, MONNERET S, et al. CO 2laser microprocessing for laser damage growth mitigation of fused silica optics[J]. Optical Engineering, 2016, 56(1): 011022.
    [21]
    白阳, 张丽娟, 廖威, 等. 熔石英损伤修复坑下游光场调制的数值模拟与实验研究[J]. 物理学报,2016,65(2):024205. doi:10.7498/aps.65.024205

    BAI Y, ZHANG L J, LIAO W, et al. Study of downstream light intensity modulation induced by mitigated damage pits of fused silica using numerical simulation and experimental measurements[J]. Acta Physica Sinica, 2016, 65(2): 024205. (in Chinese) doi:10.7498/aps.65.024205
    [22]
    GAO X, JIANG Y, QIU R, et al. Effect of the repaired damage morphology of fused silica on the modulation of incident laser[J]. Optical Materials, 2017, 64: 295-301. doi:10.1016/j.optmat.2016.12.032
    [23]
    LIAO W, LI B, ZHOU Q Y, et al. Optical modulation study of repaired damage morphologies of fused silica by scalar diffraction theory[J]. Optical Engineering, 2017, 56(1): 016113. doi:10.1117/1.OE.56.1.016113
    [24]
    蒋勇, 向霞, 刘春明, 等. 熔石英表面损伤修复点上烧蚀碎片的分类与去除的研究[J]. 中国 ,2012,39(12):1203003. doi:10.3788/CJL201239.1203003

    JIANG Y, XIANG X, LIU CH M, et al. Classification and elimination of ablation debris on the mitigated damage site in fused silica surface[J]. Chinese Journal of Lasers, 2012, 39(12): 1203003. (in Chinese) doi:10.3788/CJL201239.1203003
    [25]
    蒋勇. 熔石英光学元件表面损伤修复的理论和实验研究[D]. 成都: 电子科技大学, 2012: 173-179.

    JIANG Y. Theoretical and experimental studies on surface damage repaire of fused silica optical components[D]. Chengdu: University of Electronic Science and Technology of China, 2012: 173-179. (in Chinese).
    [26]
    GUSS G, BASS I, DRAGGOO V, et al. Mitigation of growth of laser initiated surface damage in fused silica using a 4.6-micron wavelength laser[J]. Proceedings of SPIE, 2007, 6403: 64030M.
    [27]
    JIANG Y, MU X Y, QIU R, et al. Comparison of bare and sol-gel coated of mitigated site on fused silica[J]. Proceedings of SPIE, 2015, 9543: 95430M. doi:10.1117/12.2177808
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)/Tables(1)

    Article views(996) PDF downloads(58) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map