Volume 14Issue 3
May 2021
Turn off MathJax
Article Contents
QIAO Nao-sheng, SUN Ping. Influence of CCD nonlinearity effect on the three-dimensional shape measurement of dual frequency grating[J]. Chinese Optics, 2021, 14(3): 661-669. doi: 10.37188/CO.2020-0143
Citation: QIAO Nao-sheng, SUN Ping. Influence of CCD nonlinearity effect on the three-dimensional shape measurement of dual frequency grating[J].Chinese Optics, 2021, 14(3): 661-669.doi:10.37188/CO.2020-0143

Influence of CCD nonlinearity effect on the three-dimensional shape measurement of dual frequency grating

doi:10.37188/CO.2020-0143
Funds:Supported by National Natural Science Foundation of China (No. 61701050, No. 61703157, No. 61701050), Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (No. KFJJ201807), Project of Sichuan Provincial Department of Education (No. 2018Z073)
More Information
  • Corresponding author:sunping19775525@163.com
  • Received Date:17 Aug 2020
  • Rev Recd Date:21 Sep 2020
  • Available Online:30 Apr 2021
  • Publish Date:14 May 2021
  • The CCD nonlinearity effect in the measurement system will affect the measurement accuracy of complex optical three-dimensional surface. Therefore, a method to eliminate the CCD nonlinearity effect by using dual frequency grating projection is proposed, which can improve the measurement accuracy. Firstly, the influence of CCD nonlinearity effect on three-dimensional shape measurement is analyzed. The analytical derivation and physical explanation of spectrum aliasing are given. Then, the measurement principle of dual frequency grating under the CCD nonlinearity effect is discussed. The light intensity distribution of deformed fringe and the principle of obtaining aliasing spectrum by Fourier transform are analyzed. Finally, the method to judge the measurement accuracy by the equivalent wavelength is given. The basic formula of measuring the height information of three-dimensional surface by using dual frequency grating projection is derived, and the theoretical analysis is carried out. The object is simulated as the maximum absolute value and average absolute value are 24.3181 mm and 1.0839 mm, respectively. The maximum absolute height error and average absolute height error between the measured value and the actual value are 0.8950 mm and 0.0622 mm, respectively. After increasing the fundamental frequency of the dual frequency grating, the corresponding values are reduced to 0.3710 mm and 0.0232 mm, respectively. When the fundamental frequency of the dual frequency grating is increased by 2.5 times, the separation between the fundamental frequency and the advanced spectrum becomes better, and the measurement accuracy is improved. Therefore, using dual frequency grating projection to eliminate CCD nonlinearity effect has strong practicability and is highly advisable.

  • loading
  • [1]
    TAKEDA M, MUTOH K. Fourier transform profilometry for the automatic measurement of 3-D object shapes[J]. Applied Optics, 1983, 22(24): 3977. doi:10.1364/AO.22.003977
    [2]
    QIAO N SH, QUAN CH G. A novel phase retrieval method in fringe projection based on phase-shifting algorithm[J]. Journal of Optics, 2018, 47(4): 534-541. doi:10.1007/s12596-018-0480-z
    [3]
    AO M, ZHANG L, SHI X G, et al. Measurement of the three-dimensional surface deformation of the Jiaju landslide using a surface-parallel flow model[J]. Remote Sensing Letters, 2019, 10(8): 776-785. doi:10.1080/2150704X.2019.1608601
    [4]
    祝祥, 邵双运, 宋志军. 基于线结构光传感器的轨道板几何形貌检测方法[J]. 中国光学,2018,11(5):841-850. doi:10.3788/co.20181105.0841

    ZHU X, SHAO SH Y, SONG ZH J. A detection method based on line-structured light sensor for geometrical morphology of track slab[J]. Chinese Optics, 2018, 11(5): 841-850. (in Chinese) doi:10.3788/co.20181105.0841
    [5]
    张旭, 邵双运, 祝祥, 等. 光学三维扫描仪光强传递函数的测量和校正[J]. 中国光学,2018,11(1):123-130. doi:10.3788/co.20181101.0123

    ZHANG X, SHAO SH Y, ZHU X, et al. Measurement and calibration of the intensity transform function of the optical 3D profilometry system[J]. Chinese Optics, 2018, 11(1): 123-130. (in Chinese) doi:10.3788/co.20181101.0123
    [6]
    杜永兆, 冯国英, 张凯, 等. CCD非线性效应对剪切干涉法波前检测的影响[J]. 强 与粒子束,2010,22(8):1775-1779. doi:10.3788/HPLPB20102208.1775

    DU Y ZH, FENG G Y, ZHANG K, et al. Effect of CCD nonlinearity on wavefront detection by shearing interferometry[J]. High Power Laser and Particle Beams, 2010, 22(8): 1775-1779. (in Chinese) doi:10.3788/HPLPB20102208.1775
    [7]
    于杰. 用于相移点衍射干涉仪的加权最小二乘相位提取算法[J]. 中国光学与应用光学,2010,3(6):605-615.

    YU J. Weighted least square phase extraction algorithm for phase-shifting point diffraction interferometer[J]. Chinese Journal of Optics and Applied Optics, 2010, 3(6): 605-615. (in Chinese)
    [8]
    苏轲, 陈文静. 小波变换轮廓术抑制CCD非线性的分析[J]. 光学技术,2009,35(1):37-40, 44. doi:10.3321/j.issn:1002-1582.2009.01.006

    SU K, CHEN W J. Analyzing wavelet transform profilometry in the restraining CCD nonlinear characteristic[J]. Optical Technique, 2009, 35(1): 37-40, 44. (in Chinese) doi:10.3321/j.issn:1002-1582.2009.01.006
    [9]
    FU Y J, JIANG G Y, CHEN F Y. A novel Fourier transform profilometry based on dual-frequency grating[J]. Optik, 2012, 123(10): 863-869. doi:10.1016/j.ijleo.2011.06.055
    [10]
    武迎春, 曹益平, 肖焱山. 基于双频复合光栅投影的陡变物体三维面形测量[J]. 光电子· ,2012,23(12):2362-2367.

    WU Y CH, CAO Y P, XIAO Y SH. 3D shape measurement for a discontinuous object based on a dual frequency composite grating[J]. Journal of Optoelectronics·Laser, 2012, 23(12): 2362-2367. (in Chinese)
    [11]
    PENG K, CAO Y P, WU Y CH, et al. A dual-frequency online PMP method with phase-shifting parallel to moving direction of measured object[J]. Optics Communications, 2017, 383: 491-499. doi:10.1016/j.optcom.2016.09.048
    [12]
    HU E Y, FANG H F. Surface profile inspection of a moving object by using dual-frequency Fourier transform profilometry[J]. Optik, 2011, 122: 1245-1248. doi:10.1016/j.ijleo.2010.08.007
    [13]
    LI J, SU X Y, GUO L R. Improved Fourier transform profilometry for the automatic measurement of three-dimensional object shapes[J]. Proceedings of SPIE, 1990, 29(12): 1439-1444.
    [14]
    LU F, WU CH D, YANG J K. Optimized dithering technique for three-dimensional shape measurement with projector defocusing[J]. Optics Communications, 2019, 430: 246-255. doi:10.1016/j.optcom.2018.08.034
    [15]
    FU G K, CAO Y P, WANG Y P, et al. Three-dimensional shape measurement based on binary fringe conventional projection[J]. Transactions of the Institute of Measurement and Control, 2019, 41(14): 4073-4083. doi:10.1177/0142331219848029
    [16]
    WANG Y W, LIU L, WU J, et al. Enhanced phase-coding method for three-dimensional shape measurement with half-period codeword[J]. Applied Optics, 2019, 58(27): 7359-7366. doi:10.1364/AO.58.007359
    [17]
    王月敏, 张宗华, 高楠. 基于全场条纹反射的镜面物体三维面形测量综述[J]. 光学 精密工程,2018,26(5):1014-1027. doi:10.3788/OPE.20182605.1014

    WANG Y M, ZHANG Z H, GAO N. Review on three-dimensional surface measurements of specular objects based on full-field fringe reflection[J]. Optics and Precision Engineering, 2018, 26(5): 1014-1027. (in Chinese) doi:10.3788/OPE.20182605.1014
    [18]
    陈瑜, 潘永强, 刘丙才, 等. 基于窗口傅里叶变换的线性相位误差抑制[J]. 光学 精密工程,2020,28(6):1314-1322. doi:10.3788/OPE.20202806.1314

    CHEN Y, PAN Y Q, LIU B C, et al. Linear phase error suppression technique based on window Fourier transform[J]. Optics and Precision Engineering, 2020, 28(6): 1314-1322. (in Chinese) doi:10.3788/OPE.20202806.1314
    [19]
    尚万祺, 张文喜, 伍洲, 等. 全视场外差干涉三维测量系统[J]. 光学 精密工程,2019,27(10):2097-2104. doi:10.3788/OPE.20192710.2097

    SHANG W Q, ZHANG W X, WU ZH, et al. Three-dimensional measurement system based on full-field heterodyne interferometry[J]. Optics and Precision Engineering, 2019, 27(10): 2097-2104. (in Chinese) doi:10.3788/OPE.20192710.2097
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views(1086) PDF downloads(54) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map