Citation: | DONG Zhuo, CHEN Jie, ZHU Yi-fan, YANG Jie, WANG Zhong-chang, ZHANG Kai. Room-temperature terahertz photodetectors based on black arsenic-phosphorus[J].Chinese Optics, 2021, 14(1): 182-195.doi:10.37188/CO.2020-0175 |
[1] |
GUO W L, WANG L, CHEN X SH,
et al. Graphene-based broadband terahertz detector integrated with a square-spiral antenna[J].
Optics Letters, 2018, 43(8): 1647-1650.
doi:10.1364/OL.43.001647
|
[2] |
CASTILLA S, TERRÉS B, AUTORE M,
et al. Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction[J].
Nano Letters, 2019, 19(5): 2765-2773.
doi:10.1021/acs.nanolett.8b04171
|
[3] |
VITI L, PURDIE D G, LOMBARDO A,
et al. HBN-encapsulated, graphene-based, room-temperature terahertz receivers, with high speed and low noise[J].
Nano Letters, 2020, 20(5): 3169-3177.
doi:10.1021/acs.nanolett.9b05207
|
[4] |
LIU CH L, WANG L, CHEN X SH,
et al. Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection[J].
Carbon, 2018, 130: 233-240.
doi:10.1016/j.carbon.2018.01.020
|
[5] |
HUANG ZH M, TONG J CH, HUANG J G,
et al. Room-temperature photoconductivity far below the semiconductor bandgap[J].
Advanced Materials, 2014, 26(38): 6594-6598.
doi:10.1002/adma.201402352
|
[6] |
CHEREDNICHENKO S, HAMMAR A, BEVILACQUA S,
et al. A room temperature bolometer for terahertz coherent and incoherent detection[J].
IEEE Transactions on Terahertz Science and Technology, 2011, 1(2): 395-402.
doi:10.1109/TTHZ.2011.2164654
|
[7] |
SAKHNO M, GOLENKOV A, SIZOV F. Uncooled detector challenges: millimeter-wave and terahertz long channel field effect transistor and Schottky barrier diode detectors[J].
Journal of Applied Physics, 2013, 114(16): 164503.
doi:10.1063/1.4826364
|
[8] |
ROGALSKI A, SIZOV F. Terahertz detectors and focal plane arrays[J].
Opto-Electronics Review, 2011, 19(3): 346-404.
|
[9] |
SUN Y F, SUN J D, ZHOU Y,
et al. Room temperature GaN/AlGaN self-mixing terahertz detector enhanced by resonant antennas[J].
Applied Physics Letters, 2011, 98(25): 252103.
doi:10.1063/1.3601489
|
[10] |
VITI L, POLITANO A, VITIELLO M S. Black phosphorus nanodevices at terahertz frequencies: photodetectors and future challenges[J].
APL Materials, 2017, 5(3): 035602.
doi:10.1063/1.4979090
|
[11] |
VICARELLI L, VITIELLO M S, COQUILLAT D,
et al. Graphene field-effect transistors as room-temperature terahertz detectors[J].
Nature Materials, 2012, 11(10): 865-871.
doi:10.1038/nmat3417
|
[12] |
GUO W L, DONG ZH, XU Y J,
et al. Sensitive terahertz detection and imaging driven by the photothermoelectric effect in ultrashort-channel black phosphorus devices[J].
Advanced Science, 2020, 7(5): 1902699.
doi:10.1002/advs.201902699
|
[13] |
TREDICUCCI A, VITIELLO M S. Device concepts for graphene-based terahertz photonics[J].
IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 8500109.
|
[14] |
DYAKONOV M, SHUR M. Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current[J].
Physical Review Letters, 1993, 71(15): 2465-2468.
doi:10.1103/PhysRevLett.71.2465
|
[15] |
VITI L, HU J, COQUILLAT D,
et al. Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response[J].
Scientific Reports, 2016, 6: 20474.
doi:10.1038/srep20474
|
[16] |
CAI X H, SUSHKOV A B, SUESS R J,
et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene[J].
Nature Nanotechnology, 2014, 9(10): 814-819.
doi:10.1038/nnano.2014.182
|
[17] |
NOVOSELOV K S, GEIM A K, MOROZOV S V,
et al. Electric field effect in atomically thin carbon films[J].
Science, 2004, 306(5696): 666-669.
doi:10.1126/science.1102896
|
[18] |
MANZELI S, OVCHINNIKOV D, PASQUIER D,
et al. 2D transition metal dichalcogenides[J].
Nature Reviews Materials, 2017, 2(8): 17033.
doi:10.1038/natrevmats.2017.33
|
[19] |
MELLNIK A R, LEE J S, RICHARDELLA A,
et al. Spin-transfer torque generated by a topological insulator[J].
Nature, 2014, 511(7510): 449-451.
doi:10.1038/nature13534
|
[20] |
LI L K, YU Y J, YE G J,
et al. Black phosphorus field-effect transistors[J].
Nature Nanotechnology, 2014, 9(5): 372-377.
doi:10.1038/nnano.2014.35
|
[21] |
HU Y, QI ZH H, LU J Y,
et al. van der Waals epitaxial growth and interfacial passivation of two-dimensional single-crystalline few-layer gray arsenic nanoflakes[J].
Chemistry of Materials, 2019, 31(12): 4524-4535.
doi:10.1021/acs.chemmater.9b01151
|
[22] |
QI ZH H, HU Y, JIN ZH,
et al. Tuning the liquid-phase exfoliation of arsenic nanosheets by interaction with various solvents[J].
Physical Chemistry Chemical Physics, 2019, 21(23): 12087-12090.
doi:10.1039/C9CP01052A
|
[23] |
WANG X X, HU Y, MO J B,
et al. Arsenene: a potential therapeutic agent for acute promyelocytic leukaemia cells by acting on nuclear proteins[J].
Angewandte Chemie International Edition, 2020, 59(13): 5151-5158.
doi:10.1002/anie.201913675
|
[24] |
BANDURIN D A, SVINTSOV D, GAYDUCHENKO I,
et al. Resonant terahertz detection using graphene plasmons[J].
Nature Communications, 2018, 9(1): 5392.
doi:10.1038/s41467-018-07848-w
|
[25] |
LIU CH L, WANG L, CHEN X SH,
et al. Top-gated black phosphorus phototransistor for sensitive broadband detection[J].
Nanoscale, 2018, 10(13): 5852-5858.
doi:10.1039/C7NR09545G
|
[26] |
TANG W W, POLITANO A, GUO CH,
et al. Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator[J].
Advanced Functional Materials, 2018, 28(31): 1801786.
doi:10.1002/adfm.201801786
|
[27] |
QIN H, SUN J D, LIANG SH X,
et al. Room-temperature, low-impedance and high-sensitivity terahertz direct detector based on bilayer graphene field-effect transistor[J].
Carbon, 2017, 116: 760-765.
doi:10.1016/j.carbon.2017.02.037
|
[28] |
VITI L, COQUILLAT D, POLITANO A,
et al. Plasma-wave terahertz detection mediated by topological insulators surface states[J].
Nano Letters, 2016, 16(1): 80-87.
doi:10.1021/acs.nanolett.5b02901
|
[29] |
XIE Y, LIANG F, CHI SH M,
et al. Defect engineering of MoS
2for room-temperature terahertz photodetection[J].
ACS Applied Materials&
Interfaces, 2020, 12(6): 7351-7357.
|
[30] |
LIU B L, KÖPF M, ABBAS A N,
et al. Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties[J].
Advanced Materials, 2015, 27(30): 4423-4429.
doi:10.1002/adma.201501758
|
[31] |
PRADHAN N R, GARCIA C, LUCKING M C,
et al. Raman and electrical transport properties of few-layered arsenic-doped black phosphorus[J].
Nanoscale, 2019, 11(39): 18449-18463.
doi:10.1039/C9NR04598H
|
[32] |
LONG M SH, GAO A Y, WANG P,
et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus[J].
Science Advances, 2017, 3(6): e1700589.
doi:10.1126/sciadv.1700589
|
[33] |
TAN W C, HUANG L, NG R J,
et al. A black phosphorus carbide infrared phototransistor[J].
Advanced Materials, 2018, 30(6): 1705039.
doi:10.1002/adma.201705039
|
[34] |
WU F, XIA H, SUN H D,
et al. AsP/InSe van der waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity[J].
Advanced Functional Materials, 2019, 29(12): 1900314.
doi:10.1002/adfm.201900314
|
[35] |
SHI X Y, WANG T, WANG J,
et al. Synthesis of black arsenic-phosphorus and its application for Er-doped fiber ultrashort laser generation[J].
Optical Materials Express, 2019, 9(5): 2348-2357.
doi:10.1364/OME.9.002348
|
[36] |
SUN J D, QIN H, LEWIS R A,
et al. Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector[J].
Applied Physics Letters, 2012, 100(17): 173513.
doi:10.1063/1.4705306
|
[37] |
WU C Y, ZHOU W, YAO N J,
et al. Silicon-based high sensitivity of room-temperature microwave and sub-terahertz detector[J].
Applied Physics Express, 2019, 12(5): 052013.
doi:10.7567/1882-0786/ab14fc
|
[38] |
LI S S.
Semiconductor Physical Electronics[M]. Boston, MA: Springer, 1993.
|
[39] |
SUN J D, FENG W, DING Q F,
et al. Smaller antenna-gate gap for higher sensitivity of GaN/AlGaN HEMT terahertz detectors[J].
Applied Physics Letters, 2020, 116(16): 161109.
doi:10.1063/1.5142436
|