Volume 14Issue 3
May 2021
Turn off MathJax
Article Contents
XU Fei, PAN Qi-kun, CHEN Fei, ZHANG Kuo, YU De-yang, HE Yang, SUN Jun-jie. Development progress of Fe2+:ZnSe lasers[J]. Chinese Optics, 2021, 14(3): 458-469. doi: 10.37188/CO.2020-0180
Citation: XU Fei, PAN Qi-kun, CHEN Fei, ZHANG Kuo, YU De-yang, HE Yang, SUN Jun-jie. Development progress of Fe2+:ZnSe lasers[J].Chinese Optics, 2021, 14(3): 458-469.doi:10.37188/CO.2020-0180

Development progress of Fe2+:ZnSe lasers

doi:10.37188/CO.2020-0180
Funds:Supported by Nature National Science Foundation of China (No. 61705219); Jilin Province Science and Technology Development Plan Project (No. 20190103133JH); Foundation of State Key Laboratory of Laser interaction with Matter (No. SKLLIM1914)
More Information
  • Corresponding author:panqikun2005@163.com
  • Received Date:10 Oct 2020
  • Rev Recd Date:09 Nov 2020
  • Available Online:05 Feb 2021
  • Publish Date:14 May 2021
  • Mid-infrared lasers with emission spectrums located in the 3~5 μm atmospheric window have a wide range of possible applications in medical treatment, industrial processing, atmospheric remote sensing, space communication, infrared countermeasures and other fields. Transition Metal (TM) doped Ⅱ~Ⅵ group sulfide crystals can be used as the gain medium to achieve mid-infrared laser output. Among them, Fe 2 +:ZnSe lasers are advantageous for their high conversion efficiency, their wide tunable range in the mid-infrared band and their compact structure. They are one of the most effective ways of achieving a short pulse with high power and high energy in the mid-infrared band. With the development of material technology in recent years, Fe 2 +:ZnSe lasers have begun developing rapidly and have become a heavily researched topic. This paper reviews the development of a TM 2+:Ⅱ~Ⅵ laser represented by a Fe 2 +:ZnSe laser. The preparation methods of a Fe 2 +:ZnSe gain medium are introduced and analyzed. The pump sources and factors affecting the performance of Fe 2 +:ZnSe lasers are discussed. The output characteristics of the Fe 2 +:ZnSe laser are reviewed. The latest development of Fe 2 +:ZnSe lasers in room temperature and ultrashort pulse directions is summarized and prospected. The possible future development direction of Fe 2 +:ZnSe lasers is discussed.

  • loading
  • [1]
    王旭, 谢冀江, 潘其坤, 等. 非链式脉冲氟化氘 器的放电特性[J]. 发光学报,2015,36(9):1041-1046. doi:10.3788/fgxb20153609.1041

    WANG X, XIE J J, PAN Q K, et al. Discharge characteristic of non-chain pulsed deuterium fluoride lasers[J]. Chinese Journal of Luminescence, 2015, 36(9): 1041-1046. (in Chinese) doi:10.3788/fgxb20153609.1041
    [2]
    阮鹏, 谢冀江, 张来明, 等. 紫外预电离放电引发的非链式脉冲DF 器[J]. 发光学报,2013,34(4):450-455. doi:10.3788/fgxb20133404.0450

    RUAN P, XIE J J, ZHANG L M, et al. UV-preionized electric-discharge non-chain pulsed DF laser[J]. Chinese Journal of Luminescence, 2013, 34(4): 450-455. (in Chinese) doi:10.3788/fgxb20133404.0450
    [3]
    周华, 姚传飞, 贾志旭, 等. 中红外可调谐大能量飞秒脉冲 产生[J]. 发光学报,2020,41(4):435-441. doi:10.3788/fgxb20204104.0435

    ZHOU H, YAO CH F, JIA ZH X, et al. Mid-infrared tunable high pulse energy femtosecond pulse laser generation[J]. Chinese Journal of Luminescence, 2020, 41(4): 435-441. (in Chinese) doi:10.3788/fgxb20204104.0435
    [4]
    程小劲, 李超, 徐飞, 等. Fe:ZnS/ZnSe中红外固体 器研究进展[J]. 技术,2018,42(2):151-155. doi:10.7510/jgjs.issn.1001-3806.2018.02.002

    CHEN X J, LI CH, XU F, et al. Progress in Fe:ZnS/ZnSe middle-infrared solid-state lasers[J]. Laser Technology, 2018, 42(2): 151-155. (in Chinese) doi:10.7510/jgjs.issn.1001-3806.2018.02.002
    [5]
    DELOACH L D, PAGE R H, WILKE G D, et al. Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media[J]. IEEE Journal of Quantum Electronics, 1996, 32(6): 885-895. doi:10.1109/3.502365
    [6]
    ADAMS J J, BIBEAU C, PAGE R H, et al. 4.0-4.5- μm lasing of Fe: ZnSe below 180 K, a new mid-infrared laser material[J]. Optics Letters, 1999, 24(23): 1720-1720. doi:10.1364/OL.24.001720
    [7]
    陈媛芝, 张乐, 黄存新, 等. TM 2+: Ⅱ-Ⅵ族中红外 材料[J]. 化学进展,2015,27(5):511-521.

    CHEN Y ZH, ZHANG L, HUANG C X, et al. TM 2+: Ⅱ-Ⅵ mid-infrared materials[J]. Progress in Chemistry, 2015, 27(5): 511-521. (in Chinese)
    [8]
    潘其坤, 谢冀江, 陈飞, 等. 中红外室温大能量Fe 2+:ZnSe 器[J]. 中国 ,2018,45(11):1101001. doi:10.3788/CJL201845.1101001

    PAN Q K, XIE J J, CHEN F, et al. Mid-infrared high energy Fe 2+:ZnSe laser at room temperature[J]. Chinese Journal of Lasers, 2018, 45(11): 1101001. (in Chinese) doi:10.3788/CJL201845.1101001
    [9]
    潘其坤. 中红外固体 器研究进展[J]. 中国光学,2015,8(4):557-566. doi:10.3788/co.20150804.0557

    PAN Q K. Progress of mid-infrared solid-state laser[J]. Chinese Optics, 2015, 8(4): 557-566. (in Chinese) doi:10.3788/co.20150804.0557
    [10]
    孙骁, 韩隆, 王克强. 直接抽运中红外固体 器研究进展[J]. 与光电子学进展,2017,54(5):050007.

    SUN X, HAN L, WANG K Q. Progress in directly pumping of mid-infrared solid-state lasers[J]. Laser& Optoelectronics Progress, 2017, 54(5): 050007. (in Chinese)
    [11]
    KERNAL J, FEDOROV V V, GALLIAN A, et al. 3.9−4.8 μm gain-switched lasing of Fe:ZnSe at room temperature[J]. Optics Express, 2005, 13(26): 10608-10615. doi:10.1364/OPEX.13.010608
    [12]
    MIROV S B, FEDOROV V V, MARTYSHKIN D V, et al. Mid-IR gain media based on transition metal-doped II-VI chalcogenides[J]. Proceedings of SPIE, 2016, 9744: 97440A.
    [13]
    XIE R SH, ZHANG X Q, LIU H F. Ligand-assisted fabrication, structure, and luminescence properties of Fe:ZnSe quantum dots[J]. Materials Science and Engineering: B, 2014, 182: 86-91. doi:10.1016/j.mseb.2013.11.023
    [14]
    LANCASTER A, COOK G, MCDANIEL S A, et al.. Fe:ZnSe channel waveguide laser operating at 4122 nm[C]. Proceedings of Science and Innovations 2015. Optical Society of America, 2015.
    [15]
    NING S G, FENG G Y, ZHANG H, et al. Fabrication, structure and optical application of Fe 2+:ZnSe nanocrystalline film[J]. Optical Materials, 2019, 89: 473-479. doi:10.1016/j.optmat.2019.02.002
    [16]
    IKESUE A, AUNG Y L. Ceramic laser materials[J]. Nature Photonics, 2008, 2(12): 721-727. doi:10.1038/nphoton.2008.243
    [17]
    ZHOU T Y, ZHANG L, WEI SH, et al. MgO assisted densification of highly transparent YAG ceramics and their microstructural evolution[J]. Journal of the European Ceramic Society, 2017, 38(2): 687-693.
    [18]
    YU SH Q, CARLONI D, WU Y Q. Microstructure development and optical properties of Fe:ZnSe transparent ceramics sintered by spark plasma sintering[J]. Journal of the American Ceramic Society, 2020, 103(8): 4159-4166. doi:10.1111/jace.17144
    [19]
    许毅, 吴玉松, 姜本学, 等. 国产Yb:YAG透明陶瓷实现 输出[J]. 中国 ,2007,34(1):60. doi:10.3321/j.issn:0258-7025.2007.01.027

    XU Y, WU Y S, JIANG B X, et al. Laser output of domestic Yb: YAG transparent ceramics[J]. Chinese Journal of Lasers, 2007, 34(1): 60. (in Chinese) doi:10.3321/j.issn:0258-7025.2007.01.027
    [20]
    胡家乐, 王汇霖, 梁晰童, 等. 材料多尺度结晶研究进展[J]. 中国科学: 技术科学,2020,50(6):650-666. doi:10.1360/SST-2019-0417

    HU J L, WANG H L, LIANG X T, et al. Progress of multiscale materials crystallization[J]. SCIENTIA SINICA Technologica, 2020, 50(6): 650-666. (in Chinese) doi:10.1360/SST-2019-0417
    [21]
    HE Y H, MATEI L, JUNG H J, et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr 3single crystals[J]. Nature Communications, 2018, 9(1): 1609. doi:10.1038/s41467-018-04073-3
    [22]
    YIN L Y, JIE W Q, WANG T, et al. The effects of ACRT on the growth of ZnTe crystal by the temperature gradient solution growth technique[J]. Crystals, 2017, 7(3): 82. doi:10.3390/cryst7030082
    [23]
    SEKHON M, LENT B, DOST S. Numerical study of liquid phase diffusion growth of SiGe subjected to accelerated crucible rotation[J]. Journal of Crystal Growth, 2016, 438: 90-98. doi:10.1016/j.jcrysgro.2015.12.043
    [24]
    LIN G, BAO J, XU ZH J. A three-dimensional phase field model coupled with a lattice kinetics solver for modeling crystal growth in furnaces with accelerated crucible rotation and traveling magnetic field[J]. Computers& Fluids, 2014, 103: 204-214.
    [25]
    LYUBIMOVA T P, PARSHAKOVA Y N. Numerical investigation of heat and mass transfer during vertical Bridgman crystal growth under rotational vibrations[J]. Journal of Crystal Growth, 2014, 385: 82-87. doi:10.1016/j.jcrysgro.2013.04.063
    [26]
    KOZLOVSKY V I, AKIMOV V A, Frolov M P, et al. Room-temperature tunable mid-infrared lasers on transition-metal doped II-VI compound crystals grown from vapor phase[J]. Physica Status Solidi( B) , 2010, 247(6): 1553-1556. doi:10.1002/pssb.200983165
    [27]
    FROLOV M P, KOROSTELIN Y V, KOZLOVSKY V I, et al. Study of a room temperature, monocrystalline Fe: ZnSe laser, pumped by a high-energy, free-running Er: YAG laser[J]. Laser Physics, 2019, 29(8): 085004. doi:10.1088/1555-6611/ab2be3
    [28]
    魏乃光, 蒋立朋, 李冬旭, 等. 化学气相沉积法制备ZnSe多晶材料的缺陷研究[J]. 人工晶体学报,2020,49(1):152-157.

    WEI N G, JIANG L P, LI D X, et al. Study on the defects of ZnSe polycrystalline materials prepared by chemical vapor deposition method[J]. Journal of Synthetic Crystals, 2020, 49(1): 152-157. (in Chinese)
    [29]
    王锋, 常芳娥, 坚增运, 等. ZnSe晶体制备的工艺研究[J]. 西安工业学院学报,2005,25(1):61-63, 67.

    WANG F, CHANG F E, JIAN Z Y, et al. Preparation of ZnSe crystal from pure Zn and Se[J]. Journal of Xi'an Institute of Technology, 2005, 25(1): 61-63, 67. (in Chinese)
    [30]
    AVETISOV R I, BALABANOV S S, FIRSOV K N, et al. Hot-pressed production and laser properties of ZnSe: Fe 2+[J]. Journal of Crystal Growth, 2018, 491: 36-41. doi:10.1016/j.jcrysgro.2018.03.025
    [31]
    BALABANOV S S, FIRSOV K N, GAVRISHCHUK E M, et al. Laser properties of Fe 2+:ZnSe fabricated by solid-state diffusion bonding[J]. Laser Physics Letters, 2018, 15(4): 045806. doi:10.1088/1612-202X/aaa93f
    [32]
    BALABANOV S S, FIRSOV K N, GAVRISHCHUK E M, et al. Room-temperature lasing on Fe2 +:ZnSe with meniscus inner doped layer fabricated by solid-state diffusion bonding[J]. Laser Physics Letters, 2019, 16(5): 055004. doi:10.1088/1612-202X/ab09e8
    [33]
    FIRSOV K N, GAVRISHCHUK E M, IKONNIKOV V B, et al. The energy and spectral characteristics of a room-temperature pulsed laser on a ZnS:Fe 2+polycrystal[J]. Laser Physics Letters, 2016, 13(4): 045004. doi:10.1088/1612-2011/13/4/045004
    [34]
    FIRSOV K N, FROLOV M P, GAVRISHCHUK E M, et al. Laser on single-crystal ZnSe:Fe 2+with high pulse radiation energy at room temperature[J]. Laser Physics Letters, 2016, 13(1): 015002. doi:10.1088/1612-2011/13/1/015002
    [35]
    FIRSOV K N, GAVRISHCHUK E M, IKONNIKOV V B, et al. Room-temperature laser on a ZnSe:Fe 2+polycrystal with undoped faces, excited by an electrodischarge HF laser[J]. Laser Physics Letters, 2016, 13(5): 055002. doi:10.1088/1612-2011/13/5/055002
    [36]
    FIRSOV K N, GAVRISHCHUK E M, IKONNIKOV V B, et al. CVD-grown Fe 2+:ZnSe polycrystals for laser applications[J]. Laser Physics Letters, 2017, 14(5): 055805. doi:10.1088/1612-202X/aa66fb
    [37]
    FIRSOV K N, GAVRISHCHUK E M, IKONNIKOV V B, et al. High-energy room-temperature Fe 2+:ZnS laser[J]. Laser Physics Letters, 2016, 13(1): 015001. doi:10.1088/1612-2011/13/1/015001
    [38]
    FIRSOV K N, GAVRISHCHUK E M, KAZANTSEV S Y, et al. Increasing the radiation energy of ZnSe:Fe 2+laser at room temperature[J]. Laser Physics Letters, 2014, 11(8): 085001. doi:10.1088/1612-2011/11/8/085001
    [39]
    FIRSOV K N, GAVRISHCHUK E M, KAZANTSEV S Y, et al. Spectral and temporal characteristics of a ZnSe:Fe 2+laser pumped by a non-chain HF(DF) laser at room temperature[J]. Laser Physics Letters, 2014, 11(12): 125004. doi:10.1088/1612-2011/11/12/125004
    [40]
    FROLOV M P, KOROSTELIN Y V, KOZLOVSKY V I, et al.. Efficient 10-J pulsed Fe:ZnSe laser at 4100 nm[C]. Proceedings of 2016 International Conference Laser Optics, IEEE, 2016.
    [41]
    FROLOV M P, KOROSTELIN Y V, KOZLOVSKY V I, et al. Study of a 2-J pulsed Fe:ZnSe 4- μm laser[J]. Laser Physics Letters, 2013, 10(12): 125001. doi:10.1088/1612-2011/10/12/125001
    [42]
    GALLIAN A, FEDOROV V V, MIROV S B, et al. Hot-pressed ceramic Cr 2+:ZnSe gain-switched laser[J]. Optics Express, 2006, 14(24): 11694-11701. doi:10.1364/OE.14.011694
    [43]
    MIROV S B, FEDOROV V V, MOSKALEV I S, et al. Recent progress in transition-metal-doped II–VI Mid-IR lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 810-822. doi:10.1109/JSTQE.2007.896634
    [44]
    EVANS J W, BERRY P A, SCHEPLER K L. 840 mW continuous-wave Fe:ZnSe laser operating at 4140 nm[J]. Optics Letters, 2012, 37(23): 5021-5023. doi:10.1364/OL.37.005021
    [45]
    MIROV S, FEDOROV V, MARTYSHKIN D, et al.. High average power Fe: ZnSe and Cr:ZnSe Mid-IR Solid state lasers[C]. Proceedings of Advanced Solid State Lasers 2015, Optical Society of America, 2015.
    [46]
    VORONOV A A, KOZLOVSKII V I, KOROSTELIN Y V, et al. Laser parameters of a Fe:ZnSe crystal in the 85-255-K temperature range[J]. Quantum Electronics, 2007, 35(9): 809-812.
    [47]
    LI Y Y, DAI T Y, DUAN X M, et al. Fe:ZnSe laser pumped by a 2.93- μm Cr, Er: YAG laser[J]. Chinese Physics B, 2019, 28(6): 64203. doi:10.1088/1674-1056/28/6/064203
    [48]
    AKIMOV V A, VORONOV A A, KOZLOVSKII V I, et al. Efficient lasing in a Fe 2+:ZnSe crystal at room temperature[J]. Quantum Electronics, 2006, 36(4): 299-301. doi:10.1070/QE2006v036n04ABEH013139
    [49]
    DOROSHENKO M E, JELÍNKOVÁ H, KORANDA P, et al. Tunable mid-infrared laser properties of Cr 2+:ZnMgSe and Fe 2+:ZnSe crystals[J]. Laser Physics Letters, 2010, 7(1): 38-45. doi:10.1002/lapl.200910111
    [50]
    MYOUNG N, MARTYSHKIN D V, FEDOROV V V, et al. Energy scaling of 4.3 μm room temperature Fe: ZnSe laser[J]. Optics Letters, 2011, 36(1): 94-96. doi:10.1364/OL.36.000094
    [51]
    FEDOROV V V, MARTYSHKIN D V, MIROV M, et al.. High energy 4.1−4.6 μm Fe:ZnSe laser[C]. Proceedings of Science and Innovations 2012, Optical Society of America, 2012.
    [52]
    VELIKANOV S D, DANILOV V P, ZAKHAROV N G, et al. Fe 2+:ZnSe laser pumped by a nonchain electric-discharge HF laser at room temperature[J]. Quantum Electronics, 2014, 44(2): 141-144. doi:10.1070/QE2014v044n02ABEH015341
    [53]
    MARTYSHKIN D V, FEDOROV V V, MIROV M, et al.. High average power (35 W) pulsed Fe:ZnSe laser tunable over 3.8−4.2 µm[C]. Proceedings of the Science and Innovations 2015, Optical Society of America, 2015.
    [54]
    VELIKANOV S D, ZARETSKY N A, ZOTOV E A, et al. Room-temperature 1.2-J Fe 2+:ZnSe laser[J]. Quantum Electronics, 2016, 46(1): 11-12. doi:10.1070/QE2016v046n01ABEH015940
    [55]
    LI Y Y, YANG K, LIU G Y, et al. 1 kHz nanosecond-pulsed room temperature Fe:ZnSe laser gain-switched by a ZnGeP 2optical parametric oscillator[J]. Chinese Optics Letters, 2019, 17(8): 081404. doi:10.3788/COL201917.081404
    [56]
    LI Y Y, JU Y L, DAI T Y, et al. A gain-switched Fe:ZnSe laser pumped by a pulsed Ho, Pr: LLF laser[J]. Chinese Physics Letters, 2019, 36(4): 044201. doi:10.1088/0256-307X/36/4/044201
    [57]
    UEHARA H, TSUNAI T, HAN B, et al. 40 kHz, 20 ns acousto-optically Q-switched 4 μm Fe:ZnSe laser pumped by a fluoride fiber laser[J]. Optics Letters, 2020, 45(10): 2788-2791. doi:10.1364/OL.391365
    [58]
    PAN Q K, XIE J J, CHEN F, et al. Transversal parasitic oscillation suppression in high gain pulsed Fe 2+:ZnSe laser at room temperature[J]. Optics& Laser Technology, 2020, 127: 106151.
    [59]
    FEDOROV V V, MARTYSHKIN D, KARKI K, et al. Q-switched and gain-switched Fe:ZnSe lasers tunable over 3.60-5.15 µm[J]. Optics Express, 2019, 27(10): 13934-13941. doi:10.1364/OE.27.013934
    [60]
    EVANS J W, BERRY P A, SCHEPLER K L. A passively Q-switched, CW-pumped Fe:ZnSe laser[J]. IEEE Journal of Quantum Electronics, 2014, 50(3): 204-209. doi:10.1109/JQE.2014.2302233
    [61]
    PUSHKIN A V, MIGAL E A, TOKITA S, et al. Femtosecond graphene mode-locked Fe:ZnSe laser at 4.4 µm[J]. Optics Letters, 2020, 45(3): 738-741. doi:10.1364/OL.384300
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)/Tables(1)

    Article views(2039) PDF downloads(258) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map