Citation: | LYU Mei, ZHANG Li, ZHANG Yan, YUAN Ming-jian. Strategies for improving the stability of quantum dots light-emitting diodes[J].Chinese Optics, 2021, 14(1): 117-134.doi:10.37188/CO.2020-0184 |
[1] |
DAI X L, ZHANG ZH X, JIN Y ZH,
et al. Solution-processed, high-performance light-emitting diodes based on quantum dots[J].
Nature, 2014, 515(7525): 96-99.
doi:10.1038/nature13829
|
[2] |
SHEN H B, GAO Q, ZHANG Y B,
et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency[J].
Nature Photonics, 2019, 13(3): 192-197.
doi:10.1038/s41566-019-0364-z
|
[3] |
LI X Y, ZHAO Y B, FAN F J,
et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination[J].
Nature Photonics, 2018, 12(3): 159-164.
doi:10.1038/s41566-018-0105-8
|
[4] |
JI W Y, JING P T, XU W,
et al. High color purity ZnSe/ZnS core/shell quantum dot based blue light emitting diodes with an inverted device structure[J].
Applied Physics Letters, 2013, 103(5): 053106.
doi:10.1063/1.4817086
|
[5] |
COLVIN V, SCHLAMP M, ALIVISATOS A. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J].
Nature, 1994, 370(6488): 354-357.
doi:10.1038/370354a0
|
[6] |
SONG J J, WANG O Y, SHEN H B,
et al. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer[J].
Advanced Functional Materials, 2019, 29(33): 1808377.
doi:10.1002/adfm.201808377
|
[7] |
LI X Y, LIN Q L, SONG J J,
et al. Quantum-dot light-emitting diodes for outdoor displays with high stability at high brightness[J].
Advanced Optical Materials, 2020, 8(2): 1901145.
doi:10.1002/adom.201901145
|
[8] |
CAO W R, XIANG CH Y, YANG Y X,
et al. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring[J].
Nature Communications, 2018, 9(1): 2608.
doi:10.1038/s41467-018-04986-z
|
[9] |
MOON H, LEE C, LEE W,
et al. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications[J].
Advanced Materials, 2019, 31(34): 1804294.
doi:10.1002/adma.201804294
|
[10] |
SUN Y ZH, JIANG Y B, SUN X W,
et al. Beyond OLED: efficient quantum dot light-emitting diodes for display and lighting application[J].
The Chemical Reccord, 2019, 19(8): 1729-1752.
doi:10.1002/tcr.201800191
|
[11] |
DEMBSKI S, GRAF C, KRÜGER T,
et al. Photoactivation of CdSe/ZnS quantum dots embedded in silica colloids[J].
Small, 2008, 4(9): 1516-1526.
doi:10.1002/smll.200700997
|
[12] |
CARRILLO-CARRIÓN C, CÁRDENAS S, SIMONET B M,
et al. Quantum dots luminescence enhancement due to illumination with UV/Vis light[J].
Chemical Communications, 2009(35): 5214-5226.
doi:10.1039/b904381k
|
[13] |
PECHSTEDT K, WHITTLE T, BAUMBERG J,
et al. Photoluminescence of colloidal CdSe/ZnS quantum dots: the critical effect of water molecules[J].
The Journal of Physical Chemistry C, 2010, 114(28): 12069-12077.
doi:10.1021/jp100415k
|
[14] |
MÜLLER J, LUPTON J M, ROGACH A L,
et al. Air-induced fluorescence bursts from single semiconductor nanocrystals[J].
Applied Physics Letters, 2004, 85(3): 381-383.
doi:10.1063/1.1769585
|
[15] |
KIM D, FU Y, KIM S,
et al. Polyethylenimine ethoxylated-mediated all-solution-processed high-performance flexible inverted quantum dot-light-emitting device[J].
ACS Nano, 2017, 11(2): 1982-1990.
doi:10.1021/acsnano.6b08142
|
[16] |
KIM J H, HAN C Y, LEE K H,
et al. Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer[J].
Chemistry of Materials, 2015, 27(1): 197-204.
doi:10.1021/cm503756q
|
[17] |
SONG J ZH, LI J H, LI X M,
et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX
3)[J].
Advanced Materials, 2015, 27(44): 7162-7167.
doi:10.1002/adma.201502567
|
[18] |
ZHAO Y M, RIEMERSMA C, PIETRA F,
et al. High-temperature luminescence quenching of colloidal quantum dots[J].
ACS Nano, 2012, 6(10): 9058-9067.
doi:10.1021/nn303217q
|
[19] |
MISZTA K, DORFS D, GENOVESE A,
et al. Cation exchange reactions in colloidal branched nanocrystals[J].
ACS Nano, 2011, 5(9): 7176-7183.
doi:10.1021/nn201988w
|
[20] |
ROWLAND C E, LIU W Y, HANNAH D C,
et al. Thermal stability of colloidal InP nanocrystals: small inorganic ligands boost high-temperature photoluminescence[J].
ACS Nano, 2014, 8(1): 977-985.
doi:10.1021/nn405811p
|
[21] |
DAVIDSON-HALL T, AZIZ H. The role of excitons within the hole transporting layer in quantum dot light emitting device degradation[J].
Nanoscale, 2019, 11(17): 8310-8318.
doi:10.1039/C8NR09560D
|
[22] |
CHEN S, CAO W R, LIU T L,
et al. On the degradation mechanisms of quantum-dot light-emitting diodes[J].
Nature Communications, 2019, 10(1): 765.
doi:10.1038/s41467-019-08749-2
|
[23] |
ZHANG D D, DUAN L, LI CH,
et al. High-efficiency fluorescent organic light-emitting devices using sensitizing hosts with a small singlet–triplet exchange energy[J].
Advanced Materials, 2014, 26(29): 5050-5055.
doi:10.1002/adma.201401476
|
[24] |
CHEN F, GUAN ZH Y, TANG A W. Nanostructure and device architecture engineering for high-performance quantum-dot light-emitting diodes[J].
Journal of Materials Chemistry C, 2018, 6(41): 10958-10981.
doi:10.1039/C8TC04028A
|
[25] |
YOU J B, MENG L, SONG T B,
et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers[J].
Nature Nanotechnology, 2016, 11(1): 75-81.
doi:10.1038/nnano.2015.230
|
[26] |
YANG W G, HUANG X J, HARDER R,
et al. Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure[J].
Nature Communications, 2013, 4(1): 1680.
doi:10.1038/ncomms2661
|
[27] |
KIM S, KIM J, KIM D,
et al. High-performance transparent quantum dot light-emitting diode with patchable transparent electrodes[J].
ACS Applied Materials&
Interfaces, 2019, 11(29): 26333-26338.
|
[28] |
CUN Y K, MAI CH H, LUO Y,
et al. All-solution processed high performance inverted quantum dot light emitting diodes[J].
Journal of Materials Chemistry C, 2020, 8(12): 4264-4270.
doi:10.1039/C9TC06850C
|
[29] |
CAO F, WANG H R, SHEN P Y,
et al. High-efficiency and stable quantum dot light-emitting diodes enabled by a solution-processed metal-doped nickel oxide hole injection interfacial layer[J].
Advanced Functional Materials, 2017, 27(42): 1704278.
doi:10.1002/adfm.201704278
|
[30] |
SHI Y L, LIANG F, HU Y,
et al. High performance blue quantum dot light-emitting diodes employing polyethylenimine ethoxylated as the interfacial modifier[J].
Nanoscale, 2017, 9(39): 14792-14797.
doi:10.1039/C7NR04542E
|
[31] |
QIAN L, ZHENG Y, CHOUDHURY K R,
et al. Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages[J].
Nano Today, 2010, 5(5): 384-389.
doi:10.1016/j.nantod.2010.08.010
|
[32] |
JAVAUX C, MAHLER B, DUBERTRET B,
et al. Thermal activation of non-radiative Auger recombination in charged colloidal nanocrystals[J].
Nature Nanotechnology, 2013, 8(3): 206-212.
doi:10.1038/nnano.2012.260
|
[33] |
CHANG J H, PARK P, JUNG H,
et al. Unraveling the origin of operational instability of quantum dot based light-emitting diodes[J].
ACS Nano, 2018, 12(10): 10231-10239.
doi:10.1021/acsnano.8b03386
|
[34] |
YE Y X, ZHENG X R, CHEN D S,
et al. Design of the hole-injection/hole-transport interfaces for stable quantum-dot light-emitting diodes[J].
The Journal of Physical Chemistry Letters, 2020, 11(12): 4649-4654.
doi:10.1021/acs.jpclett.0c01323
|
[35] |
XUE X L, DONG J Y, WANG SH P,
et al. Degradation of quantum dot light emitting diodes, the case under a low driving level[J].
Journal of Materials Chemistry C, 2020, 8(6): 2014-2018.
doi:10.1039/C9TC04107A
|
[36] |
LIM J, PARK Y S, WU K F,
et al. Droop-free colloidal quantum dot light-emitting diodes[J].
Nano Letters, 2018, 18(10): 6645-6653.
doi:10.1021/acs.nanolett.8b03457
|
[37] |
PU CH D, DAI X L, SHU Y F,
et al. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots[J].
Nature Communications, 2020, 11(1): 937.
doi:10.1038/s41467-020-14756-5
|
[38] |
ZHANG ZH X, YE Y X, PU CH D,
et al. High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots[J].
Advanced Materials, 2018, 30(28): e1801387.
doi:10.1002/adma.201801387
|
[39] |
DAVIDSON-HALL T, AZIZ H. Significant enhancement in quantum dot light-emitting device stability via a cascading hole transport layer[J].
ACS Applied Materials&
Interfaces, 2020, 12(14): 16782-16791.
|
[40] |
JIANG X H, MA Y T, TIAN Y,
et al. High-efficiency and stable quantum dot light-emitting diodes with staircase V
2O
5/PEDOT: PSS hole injection layer interface barrier[J].
Organic Electronics, 2020, 78: 105589.
doi:10.1016/j.orgel.2019.105589
|
[41] |
KHAN Q, SUBRAMANIAN A, AHMED I,
et al. Overcoming the electroluminescence efficiency limitations in quantum-dot light-emitting diodes[J].
Advanced Optical Materials, 2019, 7(20): 1900695.
doi:10.1002/adom.201900695
|
[42] |
SHEN H B, CAO W R, SHEWMON N T,
et al. High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes[J].
Nano Letters, 2015, 15(2): 1211-1216.
doi:10.1021/nl504328f
|
[43] |
LEE K H, LEE J H, KANG H D,
et al. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots[J].
ACS Nano, 2014, 8(5): 4893-4901.
doi:10.1021/nn500852g
|
[44] |
LI ZH H, CHEN F, WANG L,
et al. Synthesis and evaluation of ideal core/shell quantum dots with precisely controlled shell growth: nonblinking, single photoluminescence decay channel, and suppressed FRET[J].
Chemistry of Materials, 2018, 30(11): 3668-3676.
doi:10.1021/acs.chemmater.8b00183
|
[45] |
HAN C Y, YANG H. Development of colloidal quantum dots for electrically driven light-emitting devices[J].
Journal of the Korean Ceramic Society, 2017, 54(6): 449-469.
doi:10.4191/kcers.2017.54.6.03
|
[46] |
FU Y, KIM D, JIANG W,
et al. Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots[J].
RSC Advances, 2017, 7(65): 40866-40872.
doi:10.1039/C7RA06957J
|
[47] |
YANG ZH W, WU Q Q, LIN G L,
et al. All-solution processed inverted green quantum dot light-emitting diodes with concurrent high efficiency and long lifetime[J].
Materials Horizons, 2019, 6(10): 2009-2015.
doi:10.1039/C9MH01053J
|
[48] |
KIM S, KIM T, KANG M,
et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes[J].
Journal of the American Chemical Society, 2012, 134(8): 3804-3809.
doi:10.1021/ja210211z
|
[49] |
JUN S, JANG E. Bright and stable alloy core/multishell quantum dots[J].
Angewandte Chemie International Edition, 2013, 52(2): 679-682.
doi:10.1002/anie.201206333
|
[50] |
PANDA S K, HICKEY S G, WAURISCH C,
et al. Gradated alloyed CdZnSe nanocrystals with high luminescence quantum yields and stability for optoelectronic and biological applications[J].
Journal of Materials Chemistry, 2011, 21(31): 11550-11555.
doi:10.1039/c1jm11375e
|
[51] |
YANG Y X, ZHENG Y, CAO W R,
et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures[J].
Nature Photonics, 2015, 9(4): 259-266.
doi:10.1038/nphoton.2015.36
|
[52] |
MORRIS-COHEN A J, DONAKOWSKI M D, KNOWLES K E,
et al. The effect of a common purification procedure on the chemical composition of the surfaces of CdSe quantum dots synthesized with trioctylphosphine oxide[J].
The Journal of Physical Chemistry C, 2010, 114(2): 897-906.
doi:10.1021/jp909492w
|
[53] |
KIM T, YOON C, SONG Y G,
et al. Thermal stabilities of cadmium selenide and cadmium-free quantum dots in quantum dot–silicone nanocomposites[J].
Journal of Luminescence, 2016, 177: 54-58.
doi:10.1016/j.jlumin.2016.04.038
|
[54] |
PAN J, SHANG Y Q, YIN J,
et al. Bidentate ligand-passivated CsPbI
3perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes[J].
Journal of the American Chemical Society, 2018, 140(2): 562-565.
doi:10.1021/jacs.7b10647
|
[55] |
KRIEG F, OCHSENBEIN S T, YAKUNIN S,
et al. Colloidal CsPbX
3(X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability[J].
ACS Energy Letters, 2018, 3(3): 641-646.
doi:10.1021/acsenergylett.8b00035
|
[56] |
SUN Y ZH, SU Q, ZHANG H,
et al. Investigation on thermally induced efficiency roll-off: toward efficient and ultrabright quantum-dot light-emitting diodes[J].
ACS Nano, 2019, 13(10): 11433-11442.
doi:10.1021/acsnano.9b04879
|
[57] |
CAO F, WU Q Q, YANG X Y. Efficient and stable inverted quantum dot light-emitting diodes enabled by an inorganic copper-doped tungsten phosphate hole-injection layer[J].
ACS Applied Materials&
Interfaces, 2019, 11(43): 40267-40273.
|
[58] |
YANG X Y, MUTLUGUN E, ZHAO Y B,
et al. Solution processed tungsten oxide interfacial layer for efficient hole-injection in quantum dot light-emitting diodes[J].
Small, 2014, 10(2): 247-252.
doi:10.1002/smll.201301199
|
[59] |
ZHANG H, WANG S T, SUN X W,
et al. Solution-processed vanadium oxide as an efficient hole injection layer for quantum-dot light-emitting diodes[J].
Journal of Materials Chemistry C, 2017, 5(4): 817-823.
doi:10.1039/C6TC04050K
|
[60] |
SUN Y ZH, CHEN W, WU Y H,
et al. A low-temperature-annealed and UV-ozone-enhanced combustion derived nickel oxide hole injection layer for flexible quantum dot light-emitting diodes[J].
Nanoscale, 2019, 11(3): 1021-1028.
doi:10.1039/C8NR08976K
|
[61] |
YANG X Y, ZHANG Z H, DING T,
et al. High-efficiency all-inorganic full-colour quantum dot light-emitting diodes[J].
Nano Energy, 2018, 46: 229-233.
doi:10.1016/j.nanoen.2018.02.002
|
[62] |
JI W Y, LIU S H, ZHANG H,
et al. Ultrasonic spray processed, highly efficient all-inorganic quantum-dot light-emitting diodes[J].
ACS Photonics, 2017, 4(5): 1271-1278.
doi:10.1021/acsphotonics.7b00216
|
[63] |
WANG T, ZHU B Y, WANG S P,
et al. Influence of shell thickness on the performance of NiO-based all-inorganic quantum dot light-emitting diodes[J].
ACS Applied Materials&
Interfaces, 2018, 10(17): 14894-14900.
|
[64] |
ZHANG Y D, WANG SH J, CHEN L,
et al. Solution-processed quantum dot light-emitting diodes based on NiO nanocrystals hole injection layer[J].
Organic Electronics, 2017, 44: 189-197.
doi:10.1016/j.orgel.2017.02.023
|
[65] |
LIN J, DAI X L, LIANG X Y,
et al. High-performance quantum-dot light-emitting diodes using NiO
xHole‐injection layers with a high and stable work function[J].
Advanced Functional Materials, 2020, 30(5): 1907265.
doi:10.1002/adfm.201907265
|
[66] |
WANG L X, PAN J Y, QIAN J P,
et al. Performance enhancement of all-inorganic quantum dot light-emitting diodes via surface modification of nickel oxide nanoparticles hole transport layer[J].
ACS Applied Electronic Materials, 2019, 1(10): 2096-2102.
doi:10.1021/acsaelm.9b00479
|
[67] |
SUN Q J, WANG Y A, LI L S,
et al. Bright, multicoloured light-emitting diodes based on quantum dots[J].
Nature Photonics, 2007, 1(12): 717-722.
doi:10.1038/nphoton.2007.226
|
[68] |
QIAN L, ZHENG Y, XUE J G,
et al. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures[J].
Nature Photonics, 2011, 5(9): 543-548.
doi:10.1038/nphoton.2011.171
|
[69] |
KWAK J, BAE W K, LEE D,
et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure[J].
Nano Letters, 2012, 12(5): 2362-2366.
doi:10.1021/nl3003254
|
[70] |
CHO K S, LEE E K, JOO W J,
et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes[J].
Nature Photonics, 2009, 3(6): 341-345.
doi:10.1038/nphoton.2009.92
|
[71] |
KIM H Y, PARK Y J, KIM J,
et al. Transparent InP quantum dot light-emitting diodes with ZrO
2electron transport layer and indium zinc oxide top electrode[J].
Advanced Functional Materials, 2016, 26(20): 3454-3461.
doi:10.1002/adfm.201505549
|
[72] |
XIONG X Y, WEI CH T, XIE L M,
et al. Realizing 17.0% external quantum efficiency in red quantum dot light-emitting diodes by pursuing the ideal inkjet-printed film and interface[J].
Organic Electronics, 2019, 73: 247-254.
doi:10.1016/j.orgel.2019.06.016
|
[73] |
XIA F T, SUN X W, CHEN SH M. Alternating-current driven quantum-dot light-emitting diodes with high brightness[J].
Nanoscale, 2019, 11(12): 5231-5239.
doi:10.1039/C8NR10461A
|
[74] |
WANG F ZH, SUN W D, LIU P,
et al. Achieving balanced charge injection of blue quantum dot light-emitting diodes through transport layer doping strategies[J].
The Journal of Physical Chemistry Letters, 2019, 10(5): 960-965.
doi:10.1021/acs.jpclett.9b00189
|
[75] |
LEE Y, KIM H M, KIM J,
et al. Remarkable lifetime improvement of quantum-dot light emitting diodes by incorporating rubidium carbonate in metal-oxide electron transport layers[J].
Journal of Materials Chemistry C, 2019, 7(32): 10082-10091.
doi:10.1039/C9TC02683E
|
[76] |
LI ZH H, HU Y X, SHEN H B,
et al. Efficient and long-life green light-emitting diodes comprising tridentate thiol capped quantum dots[J].
Laser&
Photonics Reviews, 2017, 11(1): 1600227.
|
[77] |
LIU Y, JIANG C B, SONG CH,
et al. Highly efficient all-solution processed inverted quantum dots based light emitting diodes[J].
ACS Nano, 2018, 12(2): 1564-1570.
doi:10.1021/acsnano.7b08129
|
[78] |
LAN L H, LIU B CH, TAO H,
et al. Preparation of efficient quantum dot light-emitting diodes by balancing charge injection and sensitizing emitting layer with phosphorescent dye[J].
Journal of Materials Chemistry C, 2019, 7(19): 5755-5763.
doi:10.1039/C8TC04991B
|
[79] |
ZHENG L L, ZHAI G M, ZHANG Y,
et al. Solution-processed blue quantum-dot light-emitting diodes based on double hole transport layers: charge injection balance, solvent erosion control and performance improvement[J].
Superlattices and Microstructures, 2020, 140: 106460.
doi:10.1016/j.spmi.2020.106460
|
[80] |
JIANG C B, ZOU J H, LIU Y,
et al. Fully solution-processed tandem white quantum-dot light-emitting diode with an external quantum efficiency exceeding 25%[J].
ACS Nano, 2018, 12(6): 6040-6049.
doi:10.1021/acsnano.8b02289
|
[81] |
JIANG C B, LIU H M, LIU B Q,
et al. Improved performance of inverted quantum dots light emitting devices by introducing double hole transport layers[J].
Organic Electronics, 2016, 31: 82-89.
doi:10.1016/j.orgel.2016.01.009
|
[82] |
PAN J Y, WEI CH T, WANG L X,
et al. Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment[J].
Nanoscale, 2018, 10(2): 592-602.
doi:10.1039/C7NR06248F
|
[83] |
WANG X J, SHEN P Y, CAO F,
et al. Stepwise bi-layer hole-transport interlayers with deep highest occupied molecular orbital level for efficient green quantum dot light-emitting diodes[J].
IEEE Electron Device Letters, 2019, 40(7): 1139-1142.
doi:10.1109/LED.2019.2916584
|
[84] |
TANG P Y, XIE L M, XIONG X Y,
et al. Realizing 22.3% EQE and 7-fold lifetime enhancement in QLEDs via blending polymer TFB and cross-linkable small molecules for a solvent-resistant hole transport layer[J].
ACS Applied Materials&
Interfaces, 2020, 12(11): 13087-13095.
|
[85] |
LIU Y Y, LAN L H, LIU B CH,
et al. Improved performance of inverted quantum dot light-emitting diodes by blending the small-molecule and polymer materials as hole transport layer[J].
Organic Electronics, 2020, 80: 105618.
doi:10.1016/j.orgel.2020.105618
|
[86] |
LIN Q L, WANG L, LI ZH H,
et al. Nonblinking quantum-dot-based blue light-emitting diodes with high efficiency and a balanced charge-injection process[J].
ACS Photonics, 2018, 5(3): 939-946.
doi:10.1021/acsphotonics.7b01195
|
[87] |
DING K, CHEN H T, FAN L W,
et al. Polyethylenimine insulativity-dominant charge-injection balance for highly efficient inverted quantum dot light-emitting diodes[J].
ACS Applied Materials&
Interfaces, 2017, 9(23): 20231-20238.
|
[88] |
RASTOGI P, PALAZON F, PRATO M,
et al. Enhancing the performance of CdSe/CdS dot-in-rod light-emitting diodes via surface ligand modification[J].
ACS Applied Materials&
Interfaces, 2018, 10(6): 5665-5672.
|
[89] |
JIN H, MOON H, LEE W,
et al. Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers[J].
RSC Advances, 2019, 9(21): 11634-11640.
doi:10.1039/C9RA00145J
|
[90] |
LI Y F, DAI X L, CHEN D S,
et al. Inverted quantum dot light-emitting diodes with conductive interlayers of zirconium acetylacetonate[J].
Journal of Materials Chemistry C, 2019, 7(11): 3154-3159.
doi:10.1039/C8TC06511J
|
[91] |
LI Y, HOU X Q, DAI X L,
et al. Stoichiometry-controlled InP-based quantum dots: synthesis, photoluminescence, and electroluminescence[J].
Journal of the American Chemical Society, 2019, 141(16): 6448-6452.
doi:10.1021/jacs.8b12908
|
[92] |
WON Y H, CHO O, KIM T,
et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes[J].
Nature, 2019, 575(7784): 634-638.
doi:10.1038/s41586-019-1771-5
|