Volume 14Issue 3
May 2021
Turn off MathJax
Article Contents
WANG Yu-Zhao, TAO Yu-Liang, SUN Hai-Qing, YANG Chao. Carbon dioxide detection technology based on the laser occultation absorption spectrum[J]. Chinese Optics, 2021, 14(3): 634-642. doi: 10.37188/CO.2020-0201
Citation: WANG Yu-Zhao, TAO Yu-Liang, SUN Hai-Qing, YANG Chao. Carbon dioxide detection technology based on the laser occultation absorption spectrum[J].Chinese Optics, 2021, 14(3): 634-642.doi:10.37188/CO.2020-0201

Carbon dioxide detection technology based on the laser occultation absorption spectrum

doi:10.37188/CO.2020-0201
Funds:Supported by Civil Aerospace 13 th Five-Year Pre-research Project (No. D040105)
More Information
  • Corresponding author:zz0525wyz@163.com
  • Received Date:28 Dec 2020
  • Rev Recd Date:08 Jan 2021
  • Available Online:27 Mar 2021
  • Publish Date:14 May 2021
  • The advantages and disadvantages of fixed-wavelength laser occultation differential absorption technology are analyzed, and the measurement principle of tunable laser direct absorption spectroscopy technology is introduced. The relationship between optimal wavelength transmittance and signal-to-noise ratio and the relationship between measurement error and background light interference are analyzed. According to the working wavelength range of the high-sensitivity detector, 6310.915 cm −1, 6310.893 cm −1, 6310.890 cm −1and 6310.8834 cm −1are selected as the absorption working wavelengths, and 6310.15 cm −1is selected as the reference wavelength, and the detection ability of each wavelength is simulated and analyzed. Simulation results show that the detection error of a CO 2concentration is better than 0.9% in the range of 5~35 km and better than 0.4% in the range of 7~42 km with a vertical resolution of 1 km. This technology reduces the cost and complexity of the system, and is beneficial to the design and implementation of space-borne products.

  • loading
  • [1]
    IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability[M]. Cambridge: Cambridge University Press, 2014.
    [2]
    熊伟. 高分五号卫星大气主要温室气体监测仪优化设计及数据分析[J]. 上海航天,2019,36(S2):167-172.

    XIONG W. Optimum design and data analysis of greenhouse gases monitoring instrument on GF-5satellite[J]. Aerospace Shanghai, 2019, 36(S2): 167-172. (in Chinese)
    [3]
    FRANKENBERG C, POLLOCK R, LEE R A M, et al. The Orbiting Carbon Observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements[J]. Atmospheric Measurement Techniques, 2015, 8(1): 301-313. doi:10.5194/amt-8-301-2015
    [4]
    谢杨易, 刘继桥, 姜佳欣, 等. 使CO 2浓度测量误差减小的星载 雷达波长优化[J]. 红外与 工程,2014,43(1):88-93. doi:10.3969/j.issn.1007-2276.2014.01.015

    XIE Y Y, LIU J Q, JIANG J X, et al. Wavelengths optimization to decrease error for a space-borne lidar measuring CO 2concentration[J]. Infrared and Laser Engineering, 2014, 43(1): 88-93. (in Chinese) doi:10.3969/j.issn.1007-2276.2014.01.015
    [5]
    宗雪梅. 大气红外辐射超高光谱探测仪临边探测—污染气体的反演精度和光谱通道评估[J]. 环境科学学报,2020,40(4):1410-1421.

    ZONG X M. Inversion accuracy and spectral channel evaluation of atmospheric polluted gases of atmospheric infrared radiation ultra-high detector under limb sounding[J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1410-1421. (in Chinese)
    [6]
    王雅鹏, 李小英, 陈良富, 等. 红外临边探测发展现状[J]. 遥感学报,2016,20(4):513-527.

    WANG Y P, LI X Y, CHEN L F, et al. Overview of infrared limb sounding[J]. Journal of Remote Sensing, 2016, 20(4): 513-527. (in Chinese)
    [7]
    KIRCHENGAST G. ACCURATE-Climate benchmark profiling of greenhouse gases and thermo-dynamic variables and wind from space, ESA Earth Explorer Opportunity Mission EE8 Proposal, Scientific Report 36-2010[R]. Graz, Austria: Wegener Center Verlag, 2010.
    [8]
    李文冬, 刘继桥, 朱亚丹, 等. LEO-LEO红外 掩星CO 2浓度测量技术研究[J]. 中国 ,2019,46(8):0810001. doi:10.3788/CJL201946.0810001

    LI W D, LIU J Q, ZHU Y D, et al. LEO-LEO infrared laser occultation technique to measure atmospheric carbon dioxide concentration[J]. Chinese Journal of Lasers, 2019, 46(8): 0810001. (in Chinese) doi:10.3788/CJL201946.0810001
    [9]
    MOTTINI S, LOESCHER A, AGUIRRE M. A new approach to climatology from space: laser occultation[J]. Proceedings of SPIE, 2010, 10565: 1056565.
    [10]
    苏俊宏, 尚小燕, 弥谦. 光电技术基础[M]. 北京: 国防工业出版社, 2011.

    SU J H, SHANG X Y, MI Q. Fundamentals of Photoelectric Technology[M]. Beijing: National Defense Industry Press, 2011. (in Chinese)
    [11]
    王玉诏, 陶宇亮, 杨超, 等. 一种基于可调谐 的掩星大气密度廓线测量系统及方法: 中国, 201911032531.8[P]. 2019-10-28.

    WANG Y ZH, TAO Y L, YANG CH, et al.. Occultation atmospheric density profile measurement system and method based on tunable laser: CN, 201911032531.8[P]. 2019-10-28. (in Chinese)
    [12]
    C30659 Series-900/1060/1550/1550E[R]. Excelitas Technologies, 2012.
    [13]
    WERLE P. Tunable diode laser absorption spectroscopy: recent findings and novel approaches[J]. Infrared Physics& Technology, 1996, 37(l): 59-66.
    [14]
    屈东胜, 洪延姬, 王广宇, 等. 基于波长调制光谱的多参数测量方法研究[J]. 红外与毫米波学报,2016,35(4):470-476. doi:10.11972/j.issn.1001-9014.2016.04.015

    QU D SH, HONG Y J, WANG G Y, et al. Measurement of multi-parameters of gas based on the wavelength modulation spectroscopy[J]. Journal of Infrared and Millimeter Waves, 2016, 35(4): 470-476. (in Chinese) doi:10.11972/j.issn.1001-9014.2016.04.015
    [15]
    王玉诏. 基于matlab的 掩星大气探测仿真系统[C]. 第三十一届全国空间探测学术研讨会. 银川: 中国空间科学学会, 2018: 47-55.

    WANG Y ZH. Laser occultation detection simulation system based on matlab[C]. The 31th National Conference on Space Exploration. Yinchuan: Chinese Society of Space Research, 2018. (in Chinese)
    [16]
    饶瑞中. 现代大气光学[M]. 北京: 科学出版社, 2012.

    RAO R ZH. Modern Atmospheric Optics[M]. Beijing: Science Press, 2012. (in Chinese)
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)/Tables(1)

    Article views(885) PDF downloads(59) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map