Citation: | LIU Yi-tian, CHEN Qi-kai, TANG Zhi-yuan, ZHAO Qing, PIAN Si-jie, LIU Xin-hang, LIN Hong-tao, HAO Xiang, LIU Xu, MA Yao-guang. Research progress of aberration analysis and imaging technology based on metalens[J].Chinese Optics, 2021, 14(4): 831-850.doi:10.37188/CO.2021-0014 |
[1] |
BORN M, WOLF E.
Principles of Optics:
Electromagnetic Theory of Propagation,
Interference and Diffraction of Light[M]. 7th ed. Cambridge: Cambridge University Press, 1999.
|
[2] |
ZHANG L, MEI SH T, HUANG K,
et al. Advances in full control of electromagnetic waves with metasurfaces[J].
Advanced Optical Materials, 2016, 4(6): 818-833.
doi:10.1002/adom.201500690
|
[3] |
YU N F, GENEVET P, KATS M A,
et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J].
Science, 2011, 334(6054): 333-337.
doi:10.1126/science.1210713
|
[4] |
AIETA F, GENEVET P, KATS M A,
et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J].
Nano Letters, 2012, 12(9): 4932-4936.
doi:10.1021/nl302516v
|
[5] |
WAN X, JIANG W X, MA H F,
et al. A broadband transformation-optics metasurface lens[J].
Applied Physics Letters, 2014, 104(15): 151601.
doi:10.1063/1.4870809
|
[6] |
KHORASANINEJAD M, CHEN W T, DEVLIN R C,
et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J].
Science, 2016, 352(6290): 1190-1194.
|
[7] |
ZHENG G X, MÜHLENBERND H, KENNEY M,
et al. Metasurface holograms reaching 80% efficiency[J].
Nature Nanotechnology, 2015, 10(4): 308-312.
doi:10.1038/nnano.2015.2
|
[8] |
NI X J, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J].
Nature Communications, 2013, 4(1): 2807.
doi:10.1038/ncomms3807
|
[9] |
HUANG L L, CHEN X ZH, MÜHLENBERND H,
et al. Three-dimensional optical holography using a plasmonic metasurface[J].
Nature Communications, 2013, 4: 2808.
doi:10.1038/ncomms3808
|
[10] |
PU M B, LI X, MA X L,
et al. Catenary optics for achromatic generation of perfect optical angular momentum[J].
Science Advances, 2015, 1(9): e1500396.
doi:10.1126/sciadv.1500396
|
[11] |
GUO Y H, PU M B, ZHAO Z Y,
et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J].
ACS Photonics, 2016, 3(11): 2022-2029.
doi:10.1021/acsphotonics.6b00564
|
[12] |
DING F, WANG ZH X, HE S L,
et al. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach[J].
ACS Nano, 2015, 9(4): 4111-4119.
doi:10.1021/acsnano.5b00218
|
[13] |
PFEIFFER C, ZHANG CH, RAY V,
et al. Polarization rotation with ultra-thin bianisotropic metasurfaces[J].
Optica, 2016, 3(4): 427-432.
doi:10.1364/OPTICA.3.000427
|
[14] |
LI Y Y, CAO L Y, WEN ZH Q,
et al. Broadband quarter-wave birefringent meta-mirrors for generating sub-diffraction vector fields[J].
Optics Letters, 2019, 44(1): 110-113.
doi:10.1364/OL.44.000110
|
[15] |
WU ZH X, DONG F L, ZHANG SH,
et al. Broadband dielectric metalens for polarization manipulating and superoscillation focusing of visible light[J].
ACS Photonics, 2020, 7(1): 180-189.
doi:10.1021/acsphotonics.9b01356
|
[16] |
KHORASANINEJAD M, CAPASSO F. Metalenses: versatile multifunctional photonic components[J].
Science, 2017, 358(6367): eaam8100.
doi:10.1126/science.aam8100
|
[17] |
KANG M, FENG T H, WANG H T,
et al. Wave front engineering from an array of thin aperture antennas[J].
Optics Express, 2012, 20(14): 15882-15890.
doi:10.1364/OE.20.015882
|
[18] |
KANG M, CHEN J, WANG X L,
et al. Twisted vector field from an inhomogeneous and anisotropic metamaterial[J].
Journal of the Optical Society of America B, 2012, 29(4): 572-576.
doi:10.1364/JOSAB.29.000572
|
[19] |
VERSLEGERS L, CATRYSSE P B, YU Z F,
et al. Planar lenses based on nanoscale slit arrays in a metallic film[J].
Nano Letters, 2009, 9(1): 235-238.
doi:10.1021/nl802830y
|
[20] |
CHEN X ZH, HUANG L L, MÜHLENBERND H,
et al. Dual-polarity plasmonic metalens for visible light[J].
Nature Communications, 2012, 3: 1198.
doi:10.1038/ncomms2207
|
[21] |
NI X J, EMANI N K, KILDISHEV A V,
et al. Broadband light bending with plasmonic nanoantennas[J].
Science, 2012, 335(6067): 427.
doi:10.1126/science.1214686
|
[22] |
PORS A, NIELSEN M G, ERIKSEN R L,
et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J].
Nano Letters, 2013, 13(2): 829-834.
doi:10.1021/nl304761m
|
[23] |
KATS M A, GENEVET P, AOUST G,
et al. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy[J].
Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(31): 12364-12368.
doi:10.1073/pnas.1210686109
|
[24] |
ZHANG X Q, TIAN ZH, YUE W SH,
et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities[J].
Advanced Materials, 2013, 25(33): 4567-4572.
doi:10.1002/adma.201204850
|
[25] |
NI X J, ISHII S, KILDISHEV A V,
et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J].
Light:
Science&
Applications, 2013, 2(4): e72.
|
[26] |
GAO H W, HYUN J K, LEE M H,
et al. Broadband plasmonic microlenses based on patches of nanoholes[J].
Nano Letters, 2010, 10(10): 4111-4116.
doi:10.1021/nl1022892
|
[27] |
LIN L, GOH X M, MCGUINNESS L P,
et al. Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for fresnel-region focusing[J].
Nano Letters, 2010, 10(5): 1936-1940.
doi:10.1021/nl1009712
|
[28] |
LOVE A E H. The integration of the equations of propagation of electric waves[J].
Philosophical Transactions of the Royal Society A:
Mathematical,
Physical and Engineering Sciences, 1901, 197(287-299): 1-45.
|
[29] |
SCHELKUNOFF S A. Some equivalence theorems of electromagnetics and their application to radiation problems[J].
The Bell System Technical Journal, 1936, 15(1): 92-112.
doi:10.1002/j.1538-7305.1936.tb00720.x
|
[30] |
PFEIFFER C, GRBIC A. Metamaterial huygens’ surfaces: tailoring wave fronts with reflectionless sheets[J].
Physical Review Letters, 2013, 110(19): 197401.
doi:10.1103/PhysRevLett.110.197401
|
[31] |
ZHANG L, DING J, ZHENG H Y,
et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics[J].
Nature Communications, 2018, 9(1): 1481.
doi:10.1038/s41467-018-03831-7
|
[32] |
KHORASANINEJAD M, ZHU A Y, ROQUES-CARMES C,
et al. Polarization-insensitive metalenses at visible wavelengths[J].
Nano Letters, 2016, 16(11): 7229-7234.
doi:10.1021/acs.nanolett.6b03626
|
[33] |
ARBABI A, HORIE Y, BALL A J,
et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J].
Nature Communications, 2015, 6: 7069.
doi:10.1038/ncomms8069
|
[34] |
PANCHARATNAM S. Generalized theory of interference and its applications: part II. partially coherent pencils[J].
Proceedings of the Indian Academy of Sciences - Section A, 1956, 44(6): 398-417.
doi:10.1007/BF03046095
|
[35] |
BERRY M V. Quantal phase factors accompanying adiabatic changes[J].
Proceedings of the Royal Society A:
Mathematical,
Physical and Engineering Sciences, 1984, 392(1802): 45-57.
|
[36] |
WANG A, CHEN ZH M, DAN Y P. Planar metalenses in the mid-infrared[J].
AIP Advances, 2019, 9(8): 085327.
doi:10.1063/1.5124074
|
[37] |
WANG SH M, SUN X H, CHEN D L,
et al. The investigation of height-dependent meta-lens and focusing properties[J].
Optics Communications, 2019, 460: 125129.
|
[38] |
TANG F, YE X, LI Q ZH,
et al. Dielectric metalenses at long-wave infrared wavelengths: multiplexing and spectroscope[J].
Results in Physics, 2020, 18: 103215.
doi:10.1016/j.rinp.2020.103215
|
[39] |
LIANG Y Y, LIU H ZH, WANG F Q,
et al. High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths[J].
Nanomaterials, 2018, 8(5): 288.
doi:10.3390/nano8050288
|
[40] |
CHEN W T, ZHU A Y, KHORASANINEJAD M,
et al. Immersion meta-lenses at visible wavelengths for nanoscale imaging[J].
Nano Letters, 2017, 17(5): 3188-3194.
doi:10.1021/acs.nanolett.7b00717
|
[41] |
CHEN B H, WU P C, SU V C,
et al. GaN metalens for pixel-level full-color routing at visible light[J].
Nano Letters, 2017, 17(10): 6345-6352.
doi:10.1021/acs.nanolett.7b03135
|
[42] |
WANG SH M, WU P C, SU V C,
et al. A broadband achromatic metalens in the visible[J].
Nature Nanotechnology, 2018, 13(3): 227-232.
doi:10.1038/s41565-017-0052-4
|
[43] |
ZHANG CH, DIVITT S, FAN Q B,
et al. Low-loss metasurface optics down to the deep ultraviolet region[J].
Light:
Science&
Applications, 2020, 9(1): 55.
|
[44] |
GUO L H, HU Z L, WAN R Q,
et al. Design of aluminum nitride metalens for broadband ultraviolet incidence routing[J].
Nanophotonics, 2018, 8(1): 171-180.
doi:10.1515/nanoph-2018-0151
|
[45] |
GENEVET P, CAPASSO F, AIETA F,
et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J].
Optica, 2017, 4(1): 139-152.
doi:10.1364/OPTICA.4.000139
|
[46] |
AIETA F, GENEVET P, KATS M,
et al. Aberrations of flat lenses and aplanatic metasurfaces[J].
Optics Express, 2013, 21(25): 31530-31539.
doi:10.1364/OE.21.031530
|
[47] |
LI W ZH, QI J R, SIHVOLA A. Meta-imaging: from non-computational to computational[J].
Advanced Optical Materials, 2020, 8(23): 2001000.
doi:10.1002/adom.202001000
|
[48] |
CHEN W T, ZHU A Y, SANJEEV V,
et al. A broadband achromatic metalens for focusing and imaging in the visible[J].
Nature Nanotechnology, 2018, 13(3): 220-226.
doi:10.1038/s41565-017-0034-6
|
[49] |
BURALLI D A, MORRIS G M. Design of a wide field diffractive landscape lens[J].
Applied Optics, 1989, 28(18): 3950-3959.
doi:10.1364/AO.28.003950
|
[50] |
KLEINHANS W A. Aberrations of curved zone plates and Fresnel lenses[J].
Applied Optics, 1977, 16(6): 1701-1704.
doi:10.1364/AO.16.001701
|
[51] |
PRESUTTI F, MONTICONE F. Focusing on bandwidth: achromatic metalens limits[J].
Optica, 2020, 7(6): 624-631.
doi:10.1364/OPTICA.389404
|
[52] |
FAN ZH B, SHAO Z K, XIE M Y,
et al. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging[J].
Physical Review Applied, 2018, 10(1): 014005.
doi:10.1103/PhysRevApplied.10.014005
|
[53] |
SHE A L, ZHANG SH Y, SHIAN S,
et al. Large area metalenses: design, characterization, and mass manufacturing[J].
Optics Express, 2018, 26(2): 1573-1585.
doi:10.1364/OE.26.001573
|
[54] |
PANIAGUA-DOMÍNGUEZ R, YU Y F, KHAIDAROV E,
et al. A metalens with a near-unity numerical aperture[J].
Nano Letters, 2018, 18(3): 2124-2132.
doi:10.1021/acs.nanolett.8b00368
|
[55] |
CHEN X ZH, HUANG L L, MÜHLENBERND H,
et al. Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens[J].
Advanced Optical Materials, 2013, 1(7): 517-521.
doi:10.1002/adom.201300102
|
[56] |
LIANG H W, LIN Q L, XIE X SH,
et al. Ultrahigh numerical aperture metalens at visible wavelengths[J].
Nano Letters, 2018, 18(7): 4460-4466.
doi:10.1021/acs.nanolett.8b01570
|
[57] |
ARBABI A, ARBABI E, KAMALI S M,
et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations[J].
Nature Communications, 2016, 7: 13682.
doi:10.1038/ncomms13682
|
[58] |
GROEVER B, CHEN W T, CAPASSO F. Meta-lens doublet in the visible region[J].
Nano Letters, 2017, 17(8): 4902-4907.
doi:10.1021/acs.nanolett.7b01888
|
[59] |
SHALAGINOV M Y, AN S S, YANG F,
et al. Single-element diffraction-limited fisheye metalens[J].
Nano Letters, 2020, 20(10): 7429-7437.
doi:10.1021/acs.nanolett.0c02783
|
[60] |
CHU H J, QI J R, WANG R,
et al. Generalized rayleigh-sommerfeld diffraction theory for metasurface-modulating paraxial and non-paraxial near-field pattern estimation[J].
IEEE Access, 2019, 7: 57642-57650.
doi:10.1109/ACCESS.2019.2913956
|
[61] |
AIETA F, KATS M A, GENEVET P,
et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J].
Science, 2015, 347(6228): 1342-1345.
doi:10.1126/science.aaa2494
|
[62] |
ZHOU Y, KRAVCHENKO I I, WANG H,
et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics[J].
Nano Letters, 2018, 18(12): 7529-7537.
doi:10.1021/acs.nanolett.8b03017
|
[63] |
ARBABI E, ARBABI A, KAMALI S M,
et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces[J].
Optica, 2017, 4(6): 625-632.
doi:10.1364/OPTICA.4.000625
|
[64] |
KHORASANINEJAD M, SHI Z, ZHU A Y,
et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J].
Nano Letters, 2017, 17(3): 1819-1824.
doi:10.1021/acs.nanolett.6b05137
|
[65] |
WANG SH M, WU P C, SU V C,
et al. Broadband achromatic optical metasurface devices[J].
Nature Communications, 2017, 8(1): 187.
doi:10.1038/s41467-017-00166-7
|
[66] |
CHEN W T, ZHU A Y, SISLER J,
et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures[J].
Nature Communications, 2019, 10(1): 355.
doi:10.1038/s41467-019-08305-y
|
[67] |
CHEN W T, ZHU A Y, SISLER J,
et al. Broadband achromatic metasurface-refractive optics[J].
Nano Letters, 2018, 18(12): 7801-7808.
doi:10.1021/acs.nanolett.8b03567
|
[68] |
LI M M, LI SH SH, CHIN L K,
et al. Dual-layer achromatic metalens design with an effective Abbe number[J].
Optics Express, 2020, 28(18): 26041-26055.
doi:10.1364/OE.402478
|
[69] |
LI ZH Y, LIN P, HUANG Y W,
et al. Meta-optics achieves RGB-achromatic focusing for virtual reality[J].
Science Advances, 2021, 7(5): eabe4458.
doi:10.1126/sciadv.abe4458
|
[70] |
郁道银, 谈恒英. 工程光学[M]. 北京: 机械工业出版社, 2016.
YU D Y, TAN H Y.
Engineering Optics[M]. Beijing: China Machine Press, 2016. (in Chinese)
|
[71] |
YUE F Y, WEN D D, XIN J T,
et al. Vector vortex beam generation with a single plasmonic metasurface[J].
ACS Photonics, 2016, 3(9): 1558-1563.
doi:10.1021/acsphotonics.6b00392
|
[72] |
YANG Y M, WANG W Y, MOITRA P,
et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J].
Nano Letters, 2014, 14(3): 1394-1399.
doi:10.1021/nl4044482
|
[73] |
GAO H, PU M B, LI X,
et al. Super-resolution imaging with a Bessel lens realized by a geometric metasurface[J].
Optics Express, 2017, 25(12): 13933-13943.
doi:10.1364/OE.25.013933
|
[74] |
MEI SH T, MEHMOOD M Q, HUSSAIN S,
et al. Flat helical nanosieves[J].
Advanced Functional Materials, 2016, 26(29): 5255-5262.
doi:10.1002/adfm.201601345
|
[75] |
CHEN W T, KHORASANINEJAD M, ZHU A Y,
et al. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces[J].
Light:
Science&
Applications, 2017, 6(5): e16259.
|
[76] |
ZHU Y ZH, WEI D ZH, KUANG Z Y,
et al. Broadband variable meta-axicons based on nano-aperture arrays in a metallic film[J].
Scientific Reports, 2018, 8(1): 11591.
doi:10.1038/s41598-018-29265-1
|
[77] |
LI T. New opportunities for metalenses in imaging applications[J].
Science China Physics,
Mechanics&
Astronomy, 2020, 63(8): 284231.
|
[78] |
PAHLEVANINEZHAD H, KHORASANINEJAD M, HUANG Y W,
et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo[J].
Nature Photonics, 2018, 12(9): 540-547.
doi:10.1038/s41566-018-0224-2
|
[79] |
ZHOU Y, ZHENG H Y, KRAVCHENKO I I,
et al. Flat optics for image differentiation[J].
Nature Photonics, 2020, 14(5): 316-323.
doi:10.1038/s41566-020-0591-3
|
[80] |
XU B B, LI H M, GAO SH L,
et al. Metalens-integrated compact imaging devices for wide-field microscopy[J].
Advanced Photonics, 2020, 2(6): 066004.
|
[81] |
LIN R J, SU V C, WANG SH M,
et al. Achromatic metalens array for full-colour light-field imaging[J].
Nature Nanotechnology, 2019, 14(3): 227-231.
doi:10.1038/s41565-018-0347-0
|
[82] |
GHOLIPOUR B, ZHANG J F, MACDONALD K F,
et al. An all-optical, non-volatile, bidirectional, phase-change meta-switch[J].
Advanced Materials, 2013, 25(22): 3050-3054.
doi:10.1002/adma.201300588
|
[83] |
MICHEL A K U, CHIGRIN D N, Maß T W W,
et al. Using low-loss phase-change materials for mid-infrared antenna resonance tuning[J].
Nano Letters, 2013, 13(8): 3470-3475.
doi:10.1021/nl4006194
|
[84] |
QU Y R, LI Q, CAI L,
et al. Thermal camouflage based on the phase-changing material GST[J].
Light:
Science&
Applications, 2018, 7: 26.
|
[85] |
BAI W, YANG P, HUANG J,
et al. Near-infrared tunable metalens based on phase change material Ge
2Sb
2Te
5[J].
Scientific Reports, 2019, 9(1): 5368.
doi:10.1038/s41598-019-41859-x
|
[86] |
CHU CH H, TSENG M L, CHEN J,
et al. Active dielectric metasurface based on phase-change medium[J].
Laser&
Photonics Reviews, 2016, 10(6): 986-994.
|
[87] |
KIM Y, WU P C, SOKHOYAN R,
et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces[J].
Nano Letters, 2019, 19(6): 3961-3968.
doi:10.1021/acs.nanolett.9b01246
|
[88] |
SHALAGINOV M Y, AN S S, ZHANG Y F,
et al. Reconfigurable all-dielectric metalens with diffraction-limited performance[J].
Nature Communications, 2021, 12(1): 1225.
doi:10.1038/s41467-021-21440-9
|
[89] |
YU P, LI J X, ZHANG SH,
et al. Dynamic janus metasurfaces in the visible spectral region[J].
Nano Letters, 2018, 18(7): 4584-4589.
doi:10.1021/acs.nanolett.8b01848
|
[90] |
SHE A L, ZHANG SH Y, SHIAN S,
et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J].
Science Advances, 2018, 4(2): eaap9957.
doi:10.1126/sciadv.aap9957
|
[91] |
EE H S, AGARWAL R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J].
Nano Letters, 2016, 16(4): 2818-2823.
doi:10.1021/acs.nanolett.6b00618
|
[92] |
PAPAIOANNOU M, PLUM E, ROGERS E T F,
et al. All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface[J].
Light:
Science&
Applications, 2018, 7(3): 17157.
|
[93] |
ARBABI E, ARBABI A, KAMALI S M,
et al. MEMS-tunable dielectric metasurface lens[J].
Nature Communications, 2018, 9: 812.
doi:10.1038/s41467-018-03155-6
|
[94] |
CHEN CH, SONG W G, CHEN J W,
et al. Spectral tomographic imaging with aplanatic metalens[J].
Light:
Science&
Applications, 2019, 8: 99.
|
[95] |
LININGER A, ZHU A Y, PARK J S,
et al. Optical properties of metasurfaces infiltrated with liquid crystals[J].
Proceedings of the National Academy of Sciences of the United Stated of America, 2020, 117(34): 20390-20396.
doi:10.1073/pnas.2006336117
|
[96] |
LIU W W, CHENG H, TIAN J G,
et al. Diffractive metalens: from fundamentals, practical applications to current trends[J].
Advances in Physics:
X, 2020, 5(1): 1742584.
doi:10.1080/23746149.2020.1742584
|
[97] |
BANERJI S, MEEM M, MAJUMDER A,
et al. Imaging with flat optics: metalenses or diffractive lenses?[J].
Optica, 2019, 6(6): 805-810.
doi:10.1364/OPTICA.6.000805
|
[98] |
ENGELBERG J, LEVY U. The advantages of metalenses over diffractive lenses[J].
Nature Communications, 2020, 11(1): 1991.
doi:10.1038/s41467-020-15972-9
|