Volume 14Issue 4
Jul. 2021
Turn off MathJax
Article Contents
LIU Yi-tian, CHEN Qi-kai, TANG Zhi-yuan, ZHAO Qing, PIAN Si-jie, LIU Xin-hang, LIN Hong-tao, HAO Xiang, LIU Xu, MA Yao-guang. Research progress of aberration analysis and imaging technology based on metalens[J]. Chinese Optics, 2021, 14(4): 831-850. doi: 10.37188/CO.2021-0014
Citation: LIU Yi-tian, CHEN Qi-kai, TANG Zhi-yuan, ZHAO Qing, PIAN Si-jie, LIU Xin-hang, LIN Hong-tao, HAO Xiang, LIU Xu, MA Yao-guang. Research progress of aberration analysis and imaging technology based on metalens[J].Chinese Optics, 2021, 14(4): 831-850.doi:10.37188/CO.2021-0014

Research progress of aberration analysis and imaging technology based on metalens

doi:10.37188/CO.2021-0014
Funds:Supported by National Natural Science Foundation of China (No. 61905213)
More Information
  • Corresponding author:mayaoguang@zju.edu.cn
  • Received Date:18 Jan 2021
  • Rev Recd Date:22 Feb 2021
  • Available Online:22 May 2021
  • Publish Date:01 Jul 2021
  • Traditional optical lenses and optical systems implement electromagnetic wave control based on the light propagation effect. So they usually suffer from the bulky size. Recently, metasurfaces comprised of artificial subwavelength structures have been widely studied, since they take great advantages of their subwavelength thickness and provide arbitrary control of electromagnetic waves. Here, the electromagnetic wave control mechanism is introduced. Then, we analyze the monochromatic aberrations and chromatic aberrations of the metalens and the corresponding image quality evaluation methods. Also, we discuss the research progress and applications of metalens for imaging. The exist problems and future goals are pointed out at the end of the review. Based on the advantages of portability and a high degree of design freedom, metalens are expected to replace the traditional imaging devices in many applications. High efficiency, large field of view, broadband, reconfigurable and tunable imaging devices based on metasurfaces will help in important future development directions.

  • loading
  • [1]
    BORN M, WOLF E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. 7th ed. Cambridge: Cambridge University Press, 1999.
    [2]
    ZHANG L, MEI SH T, HUANG K, et al. Advances in full control of electromagnetic waves with metasurfaces[J]. Advanced Optical Materials, 2016, 4(6): 818-833. doi:10.1002/adom.201500690
    [3]
    YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi:10.1126/science.1210713
    [4]
    AIETA F, GENEVET P, KATS M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932-4936. doi:10.1021/nl302516v
    [5]
    WAN X, JIANG W X, MA H F, et al. A broadband transformation-optics metasurface lens[J]. Applied Physics Letters, 2014, 104(15): 151601. doi:10.1063/1.4870809
    [6]
    KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194.
    [7]
    ZHENG G X, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi:10.1038/nnano.2015.2
    [8]
    NI X J, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4(1): 2807. doi:10.1038/ncomms3807
    [9]
    HUANG L L, CHEN X ZH, MÜHLENBERND H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808. doi:10.1038/ncomms3808
    [10]
    PU M B, LI X, MA X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi:10.1126/sciadv.1500396
    [11]
    GUO Y H, PU M B, ZHAO Z Y, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022-2029. doi:10.1021/acsphotonics.6b00564
    [12]
    DING F, WANG ZH X, HE S L, et al. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach[J]. ACS Nano, 2015, 9(4): 4111-4119. doi:10.1021/acsnano.5b00218
    [13]
    PFEIFFER C, ZHANG CH, RAY V, et al. Polarization rotation with ultra-thin bianisotropic metasurfaces[J]. Optica, 2016, 3(4): 427-432. doi:10.1364/OPTICA.3.000427
    [14]
    LI Y Y, CAO L Y, WEN ZH Q, et al. Broadband quarter-wave birefringent meta-mirrors for generating sub-diffraction vector fields[J]. Optics Letters, 2019, 44(1): 110-113. doi:10.1364/OL.44.000110
    [15]
    WU ZH X, DONG F L, ZHANG SH, et al. Broadband dielectric metalens for polarization manipulating and superoscillation focusing of visible light[J]. ACS Photonics, 2020, 7(1): 180-189. doi:10.1021/acsphotonics.9b01356
    [16]
    KHORASANINEJAD M, CAPASSO F. Metalenses: versatile multifunctional photonic components[J]. Science, 2017, 358(6367): eaam8100. doi:10.1126/science.aam8100
    [17]
    KANG M, FENG T H, WANG H T, et al. Wave front engineering from an array of thin aperture antennas[J]. Optics Express, 2012, 20(14): 15882-15890. doi:10.1364/OE.20.015882
    [18]
    KANG M, CHEN J, WANG X L, et al. Twisted vector field from an inhomogeneous and anisotropic metamaterial[J]. Journal of the Optical Society of America B, 2012, 29(4): 572-576. doi:10.1364/JOSAB.29.000572
    [19]
    VERSLEGERS L, CATRYSSE P B, YU Z F, et al. Planar lenses based on nanoscale slit arrays in a metallic film[J]. Nano Letters, 2009, 9(1): 235-238. doi:10.1021/nl802830y
    [20]
    CHEN X ZH, HUANG L L, MÜHLENBERND H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 2012, 3: 1198. doi:10.1038/ncomms2207
    [21]
    NI X J, EMANI N K, KILDISHEV A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427. doi:10.1126/science.1214686
    [22]
    PORS A, NIELSEN M G, ERIKSEN R L, et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Letters, 2013, 13(2): 829-834. doi:10.1021/nl304761m
    [23]
    KATS M A, GENEVET P, AOUST G, et al. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(31): 12364-12368. doi:10.1073/pnas.1210686109
    [24]
    ZHANG X Q, TIAN ZH, YUE W SH, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities[J]. Advanced Materials, 2013, 25(33): 4567-4572. doi:10.1002/adma.201204850
    [25]
    NI X J, ISHII S, KILDISHEV A V, et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light: Science& Applications, 2013, 2(4): e72.
    [26]
    GAO H W, HYUN J K, LEE M H, et al. Broadband plasmonic microlenses based on patches of nanoholes[J]. Nano Letters, 2010, 10(10): 4111-4116. doi:10.1021/nl1022892
    [27]
    LIN L, GOH X M, MCGUINNESS L P, et al. Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for fresnel-region focusing[J]. Nano Letters, 2010, 10(5): 1936-1940. doi:10.1021/nl1009712
    [28]
    LOVE A E H. The integration of the equations of propagation of electric waves[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1901, 197(287-299): 1-45.
    [29]
    SCHELKUNOFF S A. Some equivalence theorems of electromagnetics and their application to radiation problems[J]. The Bell System Technical Journal, 1936, 15(1): 92-112. doi:10.1002/j.1538-7305.1936.tb00720.x
    [30]
    PFEIFFER C, GRBIC A. Metamaterial huygens’ surfaces: tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 2013, 110(19): 197401. doi:10.1103/PhysRevLett.110.197401
    [31]
    ZHANG L, DING J, ZHENG H Y, et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics[J]. Nature Communications, 2018, 9(1): 1481. doi:10.1038/s41467-018-03831-7
    [32]
    KHORASANINEJAD M, ZHU A Y, ROQUES-CARMES C, et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Letters, 2016, 16(11): 7229-7234. doi:10.1021/acs.nanolett.6b03626
    [33]
    ARBABI A, HORIE Y, BALL A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 2015, 6: 7069. doi:10.1038/ncomms8069
    [34]
    PANCHARATNAM S. Generalized theory of interference and its applications: part II. partially coherent pencils[J]. Proceedings of the Indian Academy of Sciences - Section A, 1956, 44(6): 398-417. doi:10.1007/BF03046095
    [35]
    BERRY M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1984, 392(1802): 45-57.
    [36]
    WANG A, CHEN ZH M, DAN Y P. Planar metalenses in the mid-infrared[J]. AIP Advances, 2019, 9(8): 085327. doi:10.1063/1.5124074
    [37]
    WANG SH M, SUN X H, CHEN D L, et al. The investigation of height-dependent meta-lens and focusing properties[J]. Optics Communications, 2019, 460: 125129.
    [38]
    TANG F, YE X, LI Q ZH, et al. Dielectric metalenses at long-wave infrared wavelengths: multiplexing and spectroscope[J]. Results in Physics, 2020, 18: 103215. doi:10.1016/j.rinp.2020.103215
    [39]
    LIANG Y Y, LIU H ZH, WANG F Q, et al. High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths[J]. Nanomaterials, 2018, 8(5): 288. doi:10.3390/nano8050288
    [40]
    CHEN W T, ZHU A Y, KHORASANINEJAD M, et al. Immersion meta-lenses at visible wavelengths for nanoscale imaging[J]. Nano Letters, 2017, 17(5): 3188-3194. doi:10.1021/acs.nanolett.7b00717
    [41]
    CHEN B H, WU P C, SU V C, et al. GaN metalens for pixel-level full-color routing at visible light[J]. Nano Letters, 2017, 17(10): 6345-6352. doi:10.1021/acs.nanolett.7b03135
    [42]
    WANG SH M, WU P C, SU V C, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232. doi:10.1038/s41565-017-0052-4
    [43]
    ZHANG CH, DIVITT S, FAN Q B, et al. Low-loss metasurface optics down to the deep ultraviolet region[J]. Light: Science& Applications, 2020, 9(1): 55.
    [44]
    GUO L H, HU Z L, WAN R Q, et al. Design of aluminum nitride metalens for broadband ultraviolet incidence routing[J]. Nanophotonics, 2018, 8(1): 171-180. doi:10.1515/nanoph-2018-0151
    [45]
    GENEVET P, CAPASSO F, AIETA F, et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 2017, 4(1): 139-152. doi:10.1364/OPTICA.4.000139
    [46]
    AIETA F, GENEVET P, KATS M, et al. Aberrations of flat lenses and aplanatic metasurfaces[J]. Optics Express, 2013, 21(25): 31530-31539. doi:10.1364/OE.21.031530
    [47]
    LI W ZH, QI J R, SIHVOLA A. Meta-imaging: from non-computational to computational[J]. Advanced Optical Materials, 2020, 8(23): 2001000. doi:10.1002/adom.202001000
    [48]
    CHEN W T, ZHU A Y, SANJEEV V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3): 220-226. doi:10.1038/s41565-017-0034-6
    [49]
    BURALLI D A, MORRIS G M. Design of a wide field diffractive landscape lens[J]. Applied Optics, 1989, 28(18): 3950-3959. doi:10.1364/AO.28.003950
    [50]
    KLEINHANS W A. Aberrations of curved zone plates and Fresnel lenses[J]. Applied Optics, 1977, 16(6): 1701-1704. doi:10.1364/AO.16.001701
    [51]
    PRESUTTI F, MONTICONE F. Focusing on bandwidth: achromatic metalens limits[J]. Optica, 2020, 7(6): 624-631. doi:10.1364/OPTICA.389404
    [52]
    FAN ZH B, SHAO Z K, XIE M Y, et al. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging[J]. Physical Review Applied, 2018, 10(1): 014005. doi:10.1103/PhysRevApplied.10.014005
    [53]
    SHE A L, ZHANG SH Y, SHIAN S, et al. Large area metalenses: design, characterization, and mass manufacturing[J]. Optics Express, 2018, 26(2): 1573-1585. doi:10.1364/OE.26.001573
    [54]
    PANIAGUA-DOMÍNGUEZ R, YU Y F, KHAIDAROV E, et al. A metalens with a near-unity numerical aperture[J]. Nano Letters, 2018, 18(3): 2124-2132. doi:10.1021/acs.nanolett.8b00368
    [55]
    CHEN X ZH, HUANG L L, MÜHLENBERND H, et al. Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens[J]. Advanced Optical Materials, 2013, 1(7): 517-521. doi:10.1002/adom.201300102
    [56]
    LIANG H W, LIN Q L, XIE X SH, et al. Ultrahigh numerical aperture metalens at visible wavelengths[J]. Nano Letters, 2018, 18(7): 4460-4466. doi:10.1021/acs.nanolett.8b01570
    [57]
    ARBABI A, ARBABI E, KAMALI S M, et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations[J]. Nature Communications, 2016, 7: 13682. doi:10.1038/ncomms13682
    [58]
    GROEVER B, CHEN W T, CAPASSO F. Meta-lens doublet in the visible region[J]. Nano Letters, 2017, 17(8): 4902-4907. doi:10.1021/acs.nanolett.7b01888
    [59]
    SHALAGINOV M Y, AN S S, YANG F, et al. Single-element diffraction-limited fisheye metalens[J]. Nano Letters, 2020, 20(10): 7429-7437. doi:10.1021/acs.nanolett.0c02783
    [60]
    CHU H J, QI J R, WANG R, et al. Generalized rayleigh-sommerfeld diffraction theory for metasurface-modulating paraxial and non-paraxial near-field pattern estimation[J]. IEEE Access, 2019, 7: 57642-57650. doi:10.1109/ACCESS.2019.2913956
    [61]
    AIETA F, KATS M A, GENEVET P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342-1345. doi:10.1126/science.aaa2494
    [62]
    ZHOU Y, KRAVCHENKO I I, WANG H, et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics[J]. Nano Letters, 2018, 18(12): 7529-7537. doi:10.1021/acs.nanolett.8b03017
    [63]
    ARBABI E, ARBABI A, KAMALI S M, et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces[J]. Optica, 2017, 4(6): 625-632. doi:10.1364/OPTICA.4.000625
    [64]
    KHORASANINEJAD M, SHI Z, ZHU A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824. doi:10.1021/acs.nanolett.6b05137
    [65]
    WANG SH M, WU P C, SU V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187. doi:10.1038/s41467-017-00166-7
    [66]
    CHEN W T, ZHU A Y, SISLER J, et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures[J]. Nature Communications, 2019, 10(1): 355. doi:10.1038/s41467-019-08305-y
    [67]
    CHEN W T, ZHU A Y, SISLER J, et al. Broadband achromatic metasurface-refractive optics[J]. Nano Letters, 2018, 18(12): 7801-7808. doi:10.1021/acs.nanolett.8b03567
    [68]
    LI M M, LI SH SH, CHIN L K, et al. Dual-layer achromatic metalens design with an effective Abbe number[J]. Optics Express, 2020, 28(18): 26041-26055. doi:10.1364/OE.402478
    [69]
    LI ZH Y, LIN P, HUANG Y W, et al. Meta-optics achieves RGB-achromatic focusing for virtual reality[J]. Science Advances, 2021, 7(5): eabe4458. doi:10.1126/sciadv.abe4458
    [70]
    郁道银, 谈恒英. 工程光学[M]. 北京: 机械工业出版社, 2016.

    YU D Y, TAN H Y. Engineering Optics[M]. Beijing: China Machine Press, 2016. (in Chinese)
    [71]
    YUE F Y, WEN D D, XIN J T, et al. Vector vortex beam generation with a single plasmonic metasurface[J]. ACS Photonics, 2016, 3(9): 1558-1563. doi:10.1021/acsphotonics.6b00392
    [72]
    YANG Y M, WANG W Y, MOITRA P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 2014, 14(3): 1394-1399. doi:10.1021/nl4044482
    [73]
    GAO H, PU M B, LI X, et al. Super-resolution imaging with a Bessel lens realized by a geometric metasurface[J]. Optics Express, 2017, 25(12): 13933-13943. doi:10.1364/OE.25.013933
    [74]
    MEI SH T, MEHMOOD M Q, HUSSAIN S, et al. Flat helical nanosieves[J]. Advanced Functional Materials, 2016, 26(29): 5255-5262. doi:10.1002/adfm.201601345
    [75]
    CHEN W T, KHORASANINEJAD M, ZHU A Y, et al. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces[J]. Light: Science& Applications, 2017, 6(5): e16259.
    [76]
    ZHU Y ZH, WEI D ZH, KUANG Z Y, et al. Broadband variable meta-axicons based on nano-aperture arrays in a metallic film[J]. Scientific Reports, 2018, 8(1): 11591. doi:10.1038/s41598-018-29265-1
    [77]
    LI T. New opportunities for metalenses in imaging applications[J]. Science China Physics, Mechanics& Astronomy, 2020, 63(8): 284231.
    [78]
    PAHLEVANINEZHAD H, KHORASANINEJAD M, HUANG Y W, et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo[J]. Nature Photonics, 2018, 12(9): 540-547. doi:10.1038/s41566-018-0224-2
    [79]
    ZHOU Y, ZHENG H Y, KRAVCHENKO I I, et al. Flat optics for image differentiation[J]. Nature Photonics, 2020, 14(5): 316-323. doi:10.1038/s41566-020-0591-3
    [80]
    XU B B, LI H M, GAO SH L, et al. Metalens-integrated compact imaging devices for wide-field microscopy[J]. Advanced Photonics, 2020, 2(6): 066004.
    [81]
    LIN R J, SU V C, WANG SH M, et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 2019, 14(3): 227-231. doi:10.1038/s41565-018-0347-0
    [82]
    GHOLIPOUR B, ZHANG J F, MACDONALD K F, et al. An all-optical, non-volatile, bidirectional, phase-change meta-switch[J]. Advanced Materials, 2013, 25(22): 3050-3054. doi:10.1002/adma.201300588
    [83]
    MICHEL A K U, CHIGRIN D N, Maß T W W, et al. Using low-loss phase-change materials for mid-infrared antenna resonance tuning[J]. Nano Letters, 2013, 13(8): 3470-3475. doi:10.1021/nl4006194
    [84]
    QU Y R, LI Q, CAI L, et al. Thermal camouflage based on the phase-changing material GST[J]. Light: Science& Applications, 2018, 7: 26.
    [85]
    BAI W, YANG P, HUANG J, et al. Near-infrared tunable metalens based on phase change material Ge 2Sb 2Te 5[J]. Scientific Reports, 2019, 9(1): 5368. doi:10.1038/s41598-019-41859-x
    [86]
    CHU CH H, TSENG M L, CHEN J, et al. Active dielectric metasurface based on phase-change medium[J]. Laser& Photonics Reviews, 2016, 10(6): 986-994.
    [87]
    KIM Y, WU P C, SOKHOYAN R, et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces[J]. Nano Letters, 2019, 19(6): 3961-3968. doi:10.1021/acs.nanolett.9b01246
    [88]
    SHALAGINOV M Y, AN S S, ZHANG Y F, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance[J]. Nature Communications, 2021, 12(1): 1225. doi:10.1038/s41467-021-21440-9
    [89]
    YU P, LI J X, ZHANG SH, et al. Dynamic janus metasurfaces in the visible spectral region[J]. Nano Letters, 2018, 18(7): 4584-4589. doi:10.1021/acs.nanolett.8b01848
    [90]
    SHE A L, ZHANG SH Y, SHIAN S, et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 2018, 4(2): eaap9957. doi:10.1126/sciadv.aap9957
    [91]
    EE H S, AGARWAL R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 2016, 16(4): 2818-2823. doi:10.1021/acs.nanolett.6b00618
    [92]
    PAPAIOANNOU M, PLUM E, ROGERS E T F, et al. All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface[J]. Light: Science& Applications, 2018, 7(3): 17157.
    [93]
    ARBABI E, ARBABI A, KAMALI S M, et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9: 812. doi:10.1038/s41467-018-03155-6
    [94]
    CHEN CH, SONG W G, CHEN J W, et al. Spectral tomographic imaging with aplanatic metalens[J]. Light: Science& Applications, 2019, 8: 99.
    [95]
    LININGER A, ZHU A Y, PARK J S, et al. Optical properties of metasurfaces infiltrated with liquid crystals[J]. Proceedings of the National Academy of Sciences of the United Stated of America, 2020, 117(34): 20390-20396. doi:10.1073/pnas.2006336117
    [96]
    LIU W W, CHENG H, TIAN J G, et al. Diffractive metalens: from fundamentals, practical applications to current trends[J]. Advances in Physics: X, 2020, 5(1): 1742584. doi:10.1080/23746149.2020.1742584
    [97]
    BANERJI S, MEEM M, MAJUMDER A, et al. Imaging with flat optics: metalenses or diffractive lenses?[J]. Optica, 2019, 6(6): 805-810. doi:10.1364/OPTICA.6.000805
    [98]
    ENGELBERG J, LEVY U. The advantages of metalenses over diffractive lenses[J]. Nature Communications, 2020, 11(1): 1991. doi:10.1038/s41467-020-15972-9
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)/Tables(1)

    Article views(4023) PDF downloads(920) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map