Citation: | FU Rao, LI Zi-le, ZHENG Guo-xing. Research development of amplitude-modulated metasurfaces and their functional devices[J].Chinese Optics, 2021, 14(4): 886-899.doi:10.37188/CO.2021-0017 |
[1] |
DAI Q, DENG L G, DENG J,
et al. Ultracompact, high-resolution and continuous grayscale image display based on resonant dielectric metasurfaces[J].
Optics Express, 2019, 27(20): 27927-27935.
doi:10.1364/OE.27.027927
|
[2] |
DAI Q, LI Z L, DENG L G,
et al. Single-size nanostructured metasurface for dual-channel vortex beam generation[J].
Optics Letters, 2020, 45(13): 3773-3776.
doi:10.1364/OL.398286
|
[3] |
DAI Q, ZHOU N, DENG L G,
et al. Dual-channel binary gray-image display enabled with malus-assisted metasurfaces[J].
Physical Review Applied, 2020, 14(3): 034002.
|
[4] |
DENG J, YANG Y, TAO J,
et al. Spatial frequency multiplexed meta-holography and meta-nanoprinting[J].
ACS Nano, 2019, 13(8): 9237-9246.
doi:10.1021/acsnano.9b03738
|
[5] |
FU R, DENG L G, GUAN ZH Q,
et al. Zero-order-free meta-holograms in a broadband visible range[J].
Photonics Research, 2020, 8(5): 723-728.
doi:10.1364/PRJ.387397
|
[6] |
ZHENG G X, FU R, DENG L G,
et al. On-axis three-dimensional meta-holography enabled with continuous-amplitude modulation of light[J].
Optics Express, 2021, 29(4): 6147-6157.
doi:10.1364/OE.416084
|
[7] |
SHAN X, LI Z L, DENG L G,
et al. Continuous amplitude-modulated meta-fork gratings with zero-order extinction[J].
Optics Letters, 2020, 45(7): 1902-1905.
doi:10.1364/OL.387665
|
[8] |
ZHANG Y L, CHENG Y, CHEN M,
et al. Ultracompact metaimage display and encryption with a silver nanopolarizer based metasurface[J].
Applied Physics Letters, 2020, 117(2): 021105.
doi:10.1063/5.0014987
|
[9] |
KRUK S, HOPKINS B, KRAVCHENKO I I,
et al. Invited article: broadband highly efficient dielectric metadevices for polarization control[J].
APL Photonics, 2016, 1(3): 030801.
doi:10.1063/1.4949007
|
[10] |
CHEN CH, GAO SH L, XIAO X J,
et al. Highly efficient metasurface quarter-wave plate with wave front engineering[J].
Advanced Photonics Research, 2021, 2(3): 2000154.
doi:10.1002/adpr.202000154
|
[11] |
LI Z L, KIM I, ZHANG L,
et al. Dielectric meta-holograms enabled with dual magnetic resonances in visible light[J].
ACS Nano, 2017, 11(9): 9382-9389.
doi:10.1021/acsnano.7b04868
|
[12] |
WANG Q, XU Q, ZHANG X Q,
et al. All-dielectric meta-holograms with holographic images transforming longitudinally[J].
ACS Photonics, 2018, 5(2): 599-606.
doi:10.1021/acsphotonics.7b01173
|
[13] |
WEN D D, YUE F Y, LI G X,
et al. Helicity multiplexed broadband metasurface holograms[J].
Nature Communications, 2015, 6(1): 8241.
doi:10.1038/ncomms9241
|
[14] |
ZANG X F, DONG F L, YUE F Y,
et al. Polarization encoded color image embedded in a dielectric metasurface[J].
Advanced Materials, 2018, 30(21): 1707499.
doi:10.1002/adma.201707499
|
[15] |
ZHANG CH M, WEN D D, YUE F Y,
et al. Optical metasurface generated vector beam for anticounterfeiting[J].
Physical Review Applied, 2018, 10(3): 034028.
doi:10.1103/PhysRevApplied.10.034028
|
[16] |
ZHENG G X, MÜHLENBERND H, KENNEY M,
et al. Metasurface holograms reaching 80% efficiency[J].
Nature Nanotechnology, 2015, 10(4): 308-312.
doi:10.1038/nnano.2015.2
|
[17] |
ZHENG G X, WU W B, LI Z L,
et al. Dual field-of-view step-zoom metalens[J].
Optics Letters, 2017, 42(7): 1261-1264.
doi:10.1364/OL.42.001261
|
[18] |
SHRESTHA S, OVERVIG A C, LU M,
et al. Broadband achromatic dielectric metalenses[J].
Light:
Science&
Applications, 2018, 7(1): 85.
|
[19] |
WANG SH M, WU P C, SU V C,
et al. Broadband achromatic optical metasurface devices[J].
Nature Communications, 2017, 8(1): 187.
doi:10.1038/s41467-017-00166-7
|
[20] |
WANG SH M, WU P C, SU V C,
et al. A broadband achromatic metalens in the visible[J].
Nature Nanotechnology, 2018, 13(3): 227-232.
doi:10.1038/s41565-017-0052-4
|
[21] |
LIN R J, SU V C, WANG SH M,
et al. Achromatic metalens array for full-colour light-field imaging[J].
Nature Nanotechnology, 2019, 14(3): 227-231.
doi:10.1038/s41565-018-0347-0
|
[22] |
CHENG Q Q, MA M L, YU D,
et al. Broadband achromatic metalens in terahertz regime[J].
Science Bulletin, 2019, 64(20): 1525-1531.
doi:10.1016/j.scib.2019.08.004
|
[23] |
CHEN W T, ZHU A Y, SANJEEV V,
et al. A broadband achromatic metalens for focusing and imaging in the visible[J].
Nature Nanotechnology, 2018, 13(3): 220-226.
doi:10.1038/s41565-017-0034-6
|
[24] |
FU R, LI Z L, ZHENG G X,
et al. Reconfigurable step-zoom metalens without optical and mechanical compensations[J].
Optics Express, 2019, 27(9): 12221-12230.
doi:10.1364/OE.27.012221
|
[25] |
CHEN X ZH, HUANG L L, MÜHLENBERND H,
et al. Dual-polarity plasmonic metalens for visible light[J].
Nature Communications, 2012, 3(1): 1198.
doi:10.1038/ncomms2207
|
[26] |
CUI Y, ZHENG G X, CHEN M,
et al. Reconfigurable continuous-zoom metalens in visible band[J].
Chinese Optics Letters, 2019, 17(11): 111603.
doi:10.3788/COL201917.111603
|
[27] |
LI X, CHEN L W, LI Y,
et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J].
Science Advances, 2016, 2(11): e1601102.
doi:10.1126/sciadv.1601102
|
[28] |
WAN W W, GAO J, YANG X D. Full-color plasmonic metasurface holograms[J].
ACS Nano, 2016, 10(12): 10671-10680.
doi:10.1021/acsnano.6b05453
|
[29] |
ZHANG X H, PU M B, GUO Y H,
et al. Colorful metahologram with independently controlled images in transmission and reflection spaces[J].
Advanced Functional Materials, 2019, 29(22): 1809145.
doi:10.1002/adfm.201809145
|
[30] |
HU Y Q, LI L, WANG Y J,
et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface[J].
Nano Letters, 2020, 20(2): 994-1002.
doi:10.1021/acs.nanolett.9b04107
|
[31] |
YU N F, GENEVET P, KATS M A,
et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J].
Science, 2011, 334(6054): 333-337.
doi:10.1126/science.1210713
|
[32] |
YAN Y, XIE G D, LAVERY M P J,
et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J].
Nature Communications, 2014, 5(1): 4876.
doi:10.1038/ncomms5876
|
[33] |
BAO Y J, NI J CH, QIU CH W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams[J].
Advanced Materials, 2020, 32(6): 1905659.
doi:10.1002/adma.201905659
|
[34] |
TITTL A, LEITIS A, LIU M K,
et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J].
Science, 2018, 360(6393): 1105-1109.
doi:10.1126/science.aas9768
|
[35] |
YESILKOY F, ARVELO E R, JAHANI Y,
et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J].
Nature Photonics, 2019, 13(6): 390-396.
doi:10.1038/s41566-019-0394-6
|
[36] |
RUBIN N A, D'AVERSA G, CHEVALIER P,
et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J].
Science, 2019, 365(6448): eaax1839.
doi:10.1126/science.aax1839
|
[37] |
BUTT H, MONTELONGO Y, BUTLER T,
et al. Carbon nanotube based high resolution holograms[J].
Advanced Materials, 2012, 24(44): OP331-OP336.
|
[38] |
HUANG K, LIU H, GARCIA-VIDAL F J,
et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light[J].
Nature Communications, 2015, 6(1): 7059.
doi:10.1038/ncomms8059
|
[39] |
XU ZH T, HUANG L L, LI X W,
et al. Quantitatively correlated amplitude holography based on photon sieves[J].
Advanced Optical Materials, 2020, 8(2): 1901169.
doi:10.1002/adom.201901169
|
[40] |
WALTHER B, HELGERT C, ROCKSTUHL C,
et al. Diffractive optical elements based on plasmonic metamaterials[J].
Applied Physics Letters, 2011, 98(19): 191101.
doi:10.1063/1.3587622
|
[41] |
WALTHER B, HELGERT C, ROCKSTUHL C,
et al. Spatial and spectral light shaping with metamaterials[J].
Advanced Materials, 2012, 24(47): 6300-6304.
doi:10.1002/adma.201202540
|
[42] |
MONTELONGO Y, TENORIO-PEARL J O, WILLIAMS C,
et al. Plasmonic nanoparticle scattering for color holograms[J].
Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12679-12683.
doi:10.1073/pnas.1405262111
|
[43] |
MONTELONGO Y, TENORIO-PEARL J O, MILNE W I,
et al. Polarization switchable diffraction based on subwavelength plasmonic nanoantennas[J].
Nano Letters, 2014, 14(1): 294-298.
doi:10.1021/nl4039967
|
[44] |
NI X J, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J].
Nature Communications, 2013, 4(1): 2807.
doi:10.1038/ncomms3807
|
[45] |
WANG Q, ZHANG X Q, XU Y H,
et al. Broadband metasurface holograms: toward complete phase and amplitude engineering[J].
Scientific Reports, 2016, 6(1): 32867.
doi:10.1038/srep32867
|
[46] |
LIU L X, ZHANG X Q, KENNEY M,
et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J].
Advanced Materials., 2014, 26(29): 5031-5036.
doi:10.1002/adma.201401484
|
[47] |
HE J W, DONG T, CHI B H,
et al. Meta-hologram for three-dimensional display in terahertz waveband[J].
Microelectronic Engineering, 2020, 220: 111151.
doi:10.1016/j.mee.2019.111151
|
[48] |
JIA SH L, WAN X, SU P,
et al. Broadband metasurface for independent control of reflected amplitude and phase[J].
AIP Advances, 2016, 6(4): 045024.
doi:10.1063/1.4948513
|
[49] |
SONG X, HUANG L L, TANG CH CH,
et al. Selective diffraction with complex amplitude modulation by dielectric metasurfaces[J].
Advanced Optical Materials, 2018, 6(4): 1701181.
doi:10.1002/adom.201701181
|
[50] |
OVERVIG A C, SHRESTHA S, MALEK S C,
et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase[J].
Light:
Science&
Applications, 2019, 8(1): 92.
|
[51] |
REN H R, FANG X Y, JANG J,
et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J].
Nature Nanotechnology, 2020, 15(11): 948-955.
doi:10.1038/s41565-020-0768-4
|
[52] |
HWANG C Y, YI Y, CHOI C G. Reflection-type spatial amplitude modulation of visible light based on a sub-wavelength plasmonic absorber[J].
Optics Letters, 2016, 41(5): 990-993.
doi:10.1364/OL.41.000990
|
[53] |
LIN J, GENEVET P, KATS M A,
et al. Nanostructured holograms for broadband manipulation of vector beams[J].
Nano Letters, 2013, 13(9): 4269-4274.
doi:10.1021/nl402039y
|
[54] |
MIN CH J, LIU J P, LEI T,
et al. Plasmonic nano-slits assisted polarization selective detour phase meta-hologram[J].
Laser&
Photonics Reviews, 2016, 10(6): 978-985.
|
[55] |
XIE ZH W, LEI T, SI G Y,
et al. Meta-holograms with full parameter control of wavefront over a 1000 nm bandwidth[J].
ACS Photonics, 2017, 4(9): 2158-2164.
doi:10.1021/acsphotonics.7b00710
|
[56] |
LEE G Y, YOON G, LEE S Y,
et al. Complete amplitude and phase control of light using broadband holographic metasurfaces[J].
Nanoscale, 2018, 10(9): 4237-4245.
doi:10.1039/C7NR07154J
|
[57] |
XU Q, ZHANG X Q, XU Y H,
et al. Polarization-controlled surface plasmon holography[J].
Laser&
Photonics Reviews, 2017, 11(1): 1600212.
|
[58] |
DENG Z L, JIN M K, YE X,
et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces[J].
Advanced Functional Materials, 2020, 30(21): 1910610.
doi:10.1002/adfm.201910610
|
[59] |
BAO Y J, YU Y, XU H F,
et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control[J].
Light:
Science&
Applications, 2019, 8(1): 95.
|
[60] |
DENG Z L, DENG J H, ZHUANG X,
et al. Diatomic metasurface for vectorial holography[J].
Nano Letters, 2018, 18(5): 2885-2892.
doi:10.1021/acs.nanolett.8b00047
|
[61] |
FAN Q B, LIU M Z, ZHANG CH,
et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces[J].
Physical Review Letters, 2020, 125(26): 267402.
doi:10.1103/PhysRevLett.125.267402
|
[62] |
YUE F Y, ZHANG CH M, ZANG X F,
et al. High-resolution grayscale image hidden in a laser beam[J].
Light:
Science&
Applications, 2018, 7(1): 17129.
|
[63] |
LI J X, LI Z L, DENG L G,
et al. Dichroic polarizing metasurfaces for color control and pseudo-color encoding[J].
IEEE Photonics Technology Letters, 2021, 33(2): 77-80.
|
[64] |
ZHANG CH M, DONG F L, INTARAVANNE Y,
et al. Multichannel metasurfaces for anticounterfeiting[J].
Physical Review Applied, 2019, 12(3): 034028.
doi:10.1103/PhysRevApplied.12.034028
|
[65] |
TANG Y T, INTARAVANNE Y, DENG J H,
et al. Nonlinear vectorial metasurface for optical encryption[J].
Physical Review Applied, 2019, 12(2): 024028.
doi:10.1103/PhysRevApplied.12.024028
|
[66] |
HUO P CH, SONG M W, ZHU W Q,
et al. Photorealistic full-color nanopainting enabled by a low-loss metasurface[J].
Optica, 2020, 7(9): 1171-1172.
doi:10.1364/OPTICA.403092
|
[67] |
WANG Q, ZHANG X Q, PLUM E,
et al. Polarization and frequency multiplexed terahertz meta-holography[J].
Advanced Optical Materials, 2017, 5(14): 1700277.
doi:10.1002/adom.201700277
|
[68] |
ZHANG X H, LI X, JIN J J,
et al. Polarization-independent broadband meta-holograms
viapolarization-dependent nanoholes[J].
Nanoscale, 2018, 10(19): 9304-9310.
doi:10.1039/C7NR08428E
|
[69] |
WANG L, LI T, GUO R Y,
et al. Active display and encoding by integrated plasmonic polarizer on light-emitting-diode[J].
Scientific Reports, 2013, 3(1): 2603.
doi:10.1038/srep02603
|
[70] |
GUO J Y, WANG T, QUAN B G,
et al. Polarization multiplexing for double images display[J].
Opto-Electronic Advances, 2019, 2(7): 180029.
|
[71] |
CHEN Y, GAO J, YANG X D. Chiral grayscale imaging with plasmonic metasurfaces of stepped nanoapertures[J].
Advanced Optical Materials, 2019, 7(6): 1801467.
doi:10.1002/adom.201801467
|
[72] |
CHEN Y, YANG X D, GAO J. 3D Janus plasmonic helical nanoapertures for polarization-encrypted data storage[J].
Light:
Science&
Applications, 2019, 8(1): 45.
|
[73] |
DENG J, DENG L G, GUAN Z Q,
et al. Multiplexed anticounterfeiting meta-image displays with single-sized nanostructures[J].
Nano Letters, 2020, 20(3): 1830-1838.
doi:10.1021/acs.nanolett.9b05053
|
[74] |
SHAN X, DENG L G, DAI Q,
et al. Silicon-on-insulator based multifunctional metasurface with simultaneous polarization and geometric phase controls[J].
Optics Express, 2020, 28(18): 26359-26369.
doi:10.1364/OE.402064
|
[75] |
DENG L G, DENG J, GUAN ZH Q,
et al. Malus-metasurface-assisted polarization multiplexing[J].
Light:
Science&
Applications, 2020, 9(1): 101.
|
[76] |
LI Z L, CHEN CH, GUAN ZH Q,
et al. Three-channel metasurfaces for simultaneous meta-holography and meta-nanoprinting: a single-cell design approach[J].
Laser&
Photonics Reviews, 2020, 14(6): 2000032.
|
[77] |
DAI Q, GUAN ZH Q, CHANG SH,
et al. A single-celled Tri-functional metasurface enabled with triple manipulations of light[J].
Advanced Functional Materials, 2020, 30(50): 2003990.
doi:10.1002/adfm.202003990
|