Citation: | LI Jia-hui, HOU Xi, ZHANG Yun, WANG Jia, ZHONG Xian-yun. Research progress of elastic emission machining in optical manufacturing[J]. Chinese Optics, 2021, 14(5): 1089-1103. doi: 10.37188/CO.2021-0022 |
[1] |
YUMOTO H, KOYAMA T, MATSUYAMA S, et al. Ultra-high-precision surface processing techniques for nanofocusing ellipsoidal mirrors in hard X-ray region[J]. Proceedings of SPIE, 2014, 9206: 920605.
|
[2] |
TAKEI Y, KUME T, MOTOYAMA H, et al. Development of a numerically controlled elastic emission machining system for fabricating mandrels of ellipsoidal focusing mirrors used in soft x-ray microscopy[J]. Proceedings of SPIE, 2013, 8848: 88480C.
|
[3] |
YUMOTO H, KOYAMA T, MATSUYAMA S, et al. Ellipsoidal mirror for two-dimensional 100-nm focusing in hard X-ray region[J]. Scientific Reports, 2017, 7: 16408. doi: 10.1038/s41598-017-16468-1
|
[4] |
赵晨行, 卢启鹏, 宋源, 等. 自由电子金宝搏188软件怎么用
光束线反射镜无应力夹持设计与分析[J]. 中国光学,2020,13(4):787-794. doi: 10.37188/CO.2019-0131
ZHAO CH X, LU Q P, SONG Y, et al. Design and analysis of stress-free clamping of mirrors used in free-electron laser beamlines[J]. Chinese Optics, 2020, 13(4): 787-794. (in Chinese) doi: 10.37188/CO.2019-0131
|
[5] |
SIEWERT F, BUCHHEIM J, GWALT G, et al. On the characterization of a 1 m long, ultra-precise KB-focusing mirror pair for European XFEL by means of slope measuring deflectometry[J]. Review of Scientific Instruments, 2019, 90(2): 021713. doi: 10.1063/1.5065473
|
[6] |
WEISER M. Ion beam figuring for lithography optics[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2009, 267(8-9): 1390-1393. doi: 10.1016/j.nimb.2009.01.051
|
[7] |
LIN B, JIANG X M, CAO ZH CH, et al. Novel disc hydrodynamic polishing process and tool for high-efficiency polishing of ultra-smooth surfaces[J]. Micromachines, 2018, 9(7): 333. doi: 10.3390/mi9070333
|
[8] |
袁巨龙, 吴喆, 吕冰海, 等. 非球面超精密抛光技术研究现状[J]. 机械工程学报,2012,48(23):167-177. doi: 10.3901/JME.2012.23.167
YUAN J L, WU ZH, LÜ B H, et al. Review on ultra-precision polishing technology of aspheric surface[J]. Journal of Mechanical Engineering, 2012, 48(23): 167-177. (in Chinese) doi: 10.3901/JME.2012.23.167
|
[9] |
YAMAMURA K, MIMURA H, YAMAUCHI K, et al. Aspheric surface fabrication in nm-level accuracy by numerically controlled plasma chemical vaporization machining (CVM) and elastic emission machining (EEM)[J]. Proceedings of SPIE, 2002, 4782: 265-270. doi: 10.1117/12.453749
|
[10] |
KANAOKA M, TAKINO H, NOMURA K, et al. Removal properties of low-thermal-expansion materials with rotating-sphere elastic emission machining[J]. Science and Technology of Advanced Materials, 2007, 8(3): 170-172. doi: 10.1016/j.stam.2006.12.003
|
[11] |
彭文强. 基于材料弹性域去除的超光滑表面加工关键技术研究[D]. 长沙: 国防科学技术大学, 2014.
PENG W Q. Study on the key technology of ultrasmooth surface fabrication based on the material removal in elastic mode[D]. Changsha: Graduate School of National University of Defense Technology, 2014. (in Chinese)
|
[12] |
KUBOTA A, SHINBAYASHI Y, MIMURA H, et al. Investigation of the surface removal process of silicon carbide in elastic emission machining[J]. Journal of Electronic Materials, 2007, 36(1): 92-97. doi: 10.1007/s11664-006-0006-3
|
[13] |
PENG W Q, LI SH Y, GUAN CH L, et al. Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing[J]. Optical Engineering, 2013, 52(4): 043401. doi: 10.1117/1.OE.52.4.043401
|
[14] |
KUBOTA A, MIMURA H, INAGAKI K, et al. Preparation of ultrasmooth and defect-free 4H-SiC(0001) surfaces by elastic emission machining[J]. Journal of Electronic Materials, 2005, 34(4): 439-443. doi: 10.1007/s11664-005-0124-3
|
[15] |
HIRATA T, TAKEI Y, MIMURA H. Machining property in smoothing of steeply curved surfaces by elastic emission machining[J]. Procedia CIRP, 2014, 13: 198-202. doi: 10.1016/j.procir.2014.04.034
|
[16] |
SIDPARA A. Elastic Emission Machining[M]. Boca Raton: CRC Press, 2017.
|
[17] |
MORI Y, TSUWA H, SUGIYAMA K. EEM (Elastic Emission Machining) (1st Report): concept of EEM and its feasibility[J]. Journal of the Japan Society of Precision Engineering, 1977, 43(509): 542-548. doi: 10.2493/jjspe1933.43.542
|
[18] |
TURNER T. Superpolished optics enable high-sensitivity laser applications[EB/OL]. https://www.photonics.com/Articles/Superpolished_Optics_Enable_High-Sensitivity/a52258.
|
[19] |
KIM J D. Motion analysis of powder particles in EEM using cylindrical polyurethane wheel[J]. International Journal of Machine Tools and Manufacture, 2002, 42(1): 21-28. doi: 10.1016/S0890-6955(01)00095-5
|
[20] |
MORI Y, IKAWA N, OKUDA T, et al. Numerically controlled elastic emission machining: motion analysis of fluid and distribution of film thickness[J]. Journal of the Japan Society of Precision Engineering, 1983, 49(11): 1540-1548. doi: 10.2493/jjspe1933.49.1540
|
[21] |
ZHANG L H, WANG J L, ZHANG J. Super-smooth surface fabrication technique and experimental research[J]. Applied Optics, 2012, 51(27): 6612-6617. doi: 10.1364/AO.51.006612
|
[22] |
CAO ZH CH, LIN B, JIANG X M, et al. Flow field analysis of the thin fluid film in disc hydrodynamic polishing[J]. Procedia CIRP, 2018, 77: 363-366. doi: 10.1016/j.procir.2018.09.036
|
[23] |
KANAOKA M, TAKINO H, NOMURA K, et al.. Factors affecting changes in removal rate of elastic emission machining[C]. Proceedings of ASPE 2008 Annual Meeting and the Twelfth ICPE, 2008: 615-618.
|
[24] |
KANAOKA M, LIU CH L, NOMURA K, et al. Processing efficiency of elastic emission machining for low-thermal-expansion material[J]. Surface and Interface Analysis, 2008, 40(6-7): 1002-1006. doi: 10.1002/sia.2818
|
[25] |
徐兴芹. 弹性发射加工中磨粒群运动特性的研究[D]. 大连: 大连理工大学, 2013.
XU X Q. Study of behaviour of particle group movement in elastic emission machining[D]. Dalian: Dalian University of Technology, 2013. (in Chinese)
|
[26] |
MORI Y. Elastic emission machining and its surface[J]. Journal of the Japan Society of Precision Engineering, 1980, 46(6): 659-666. doi: 10.2493/jjspe1933.46.659
|
[27] |
MORI Y, OKUDA T, SUGIYAMA K, et al. Numerically controlled elastic emission machining: consideration of machining property by motion analysis of powder particle in fluid[J]. Journal of the Japan Society of Precision Engineering, 1985, 51(5): 1033-1039. doi: 10.2493/jjspe1933.51.1033
|
[28] |
KANAOKA M, NOMURA K, YAMAUCHI K, et al.. Efficiency-enhanced elastic emission machining on the basis of processing mechanism[C]. Proceedings of the 12th Euspen International Conference, 2012: 193-196.
|
[29] |
KANAOKA M, NOMURA K, YAMAUCHI K, et al. Powder particle behavior at the processing point of elastic emission machining[J]. The Proceedings of the Manufacturing &Machine Tool Conference, 2012, 9: 143-144.
|
[30] |
YAMAUCHI K, HIROSE K, GOTO H, et al. First-principles simulations of removal process in EEM (Elastic Emission Machining)[J]. Computational Materials Science, 1999, 14(1-4): 232-235. doi: 10.1016/S0927-0256(98)00112-8
|
[31] |
MORI Y, YAMAUCHI K, ENDO K. Elastic emission machining[J]. Precision Engineering, 1987, 9(3): 123-128. doi: 10.1016/0141-6359(87)90029-8
|
[32] |
INAGAKI K, YAMAUCHI K, MIMURA H, et al. First-principles evaluations of machinability dependency on powder material in elastic emission machining[J]. Materials Transactions, 2001, 42(11): 2290-2294. doi: 10.2320/matertrans.42.2290
|
[33] |
PENG W Q, GUAN CH L, LI SH Y. Efficient fabrication of ultrasmooth and defect-free quartz glass surface by hydrodynamic effect polishing combined with ion beam figuring[J]. Optics Express, 2014, 22(11): 13951-13961. doi: 10.1364/OE.22.013951
|
[34] |
宋孝宗. 纳米颗粒胶体射流抛光机理及试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
SONG X Z. Research on mechanism and experiments of nanoparticle colloid jet polishing[D]. Harbin: Harbin Institute of Technology, 2010. (in Chinese)
|
[35] |
PENG W Q, GUAN CH L, LI SH Y. Defect-free surface of quartz glass polished in elastic mode by chemical impact reaction[J]. Journal of Central South University, 2014, 21(12): 4438-4444. doi: 10.1007/s11771-014-2446-x
|
[36] |
何宗海, 赵永彬. JP-25型重力式平衡机原理——兼讨论十字弹簧特性[J]. 试验技术与试验机,1984(4):10-17, 72.
HE Z H, ZHAO Y B. The principle of JP-25 gravity balancing machine-discussing the characteristics of cross spring[J]. Engineering and Testing, 1984(4): 10-17, 72. (in Chinese)
|
[37] |
MORI Y. Polishing device: Japan, 62-088565A[P]. 1987-04-23.
|
[38] |
MORI Y. Polishing device: Japan, 62-199353A[P]. 1987-09-03.
|
[39] |
张富. 弹性约束游离磨料超光滑表面加工技术的研究[D]. 长春: 吉林大学, 2007.
ZHANG F. Study on elastically constrained and dissociated abrasive polishing for ultra-smooth surfaces[D]. Changchun: Jilin University, 2007. (in Chinese)
|
[40] |
朱崇涛. 液流悬浮超光滑加工机理及抛光动压力的研究[D]. 长春: 吉林大学, 2007.
ZHU CH T. Study on principle of hydrodynamic suspension ultra-smooth machining and dynamic pressure of polishing[D]. Changchun: Jilin University, 2007. (in Chinese)
|
[41] |
张恩忠. 液流悬浮超光滑加工不同材料的对比研究[D]. 长春: 吉林大学, 2006.
ZHANG E ZH. Contrastive investigation into hydrodynamic suspension ultra-smooth processing different material[D]. Changchun: Jilin University, 2006. (in Chinese)
|
[42] |
WANG J L, WANG SH ZH, LIU J, et al.. Polishing device for fork type support: CN, WO2013091208A1[P]. 2013-06-27.
|
[43] |
王君, 金春水, 王丽萍, 等. 一种用于弹性发射加工的工具轮: 中国, 105563271A[P]. 2016-05-11.
WANG J, JIN CH SH, WANG L P, et al.. Tool wheels used for elastic emission machining: CN, 105563271A[P]. 2016-05-11. (in Chinese)
|
[44] |
李庆宇. 基于流体动力润滑效应的双转弹性发射加工技术研究[D]. 长沙: 国防科学技术大学, 2015.
LI Q Y. Study on the technology of elastic emission machining with dual-rotor based on hydrodynamic lubrication[D]. Changsha: Graduate School of National University of Defense Technology, 2015. (in Chinese)
|
[45] |
MORI Y, YAMAUCHI Y, YAMAMURA K, et al. Development of plasma chemical vaporization machining and elastic emission machining systems for coherent X-ray optics[J]. Proceedings of SPIE, 2001, 4501: 30-42. doi: 10.1117/12.448496
|
[46] |
YAMAUCHI K, KATAOKA T, ENDO K, et al. A study on EEM (Elastic Emission Machining): influences of dissolved oxygen to Si wafer surface[J]. Journal of the Japan Society for Precision Engineering, 1998, 64(6): 907-912. doi: 10.2493/jjspe.64.907
|
[47] |
MORI Y, IKAWA N, SUGIYAMA K, et al. Elastic Emission Machining (2nd Report): stress field and feasibility of introduction and activation of lattice defect[J]. Journal of the Japan Society of Precision Engineering, 1985, 51(6): 1187-1194. doi: 10.2493/jjspe1933.51.1187
|
[48] |
KUBOTA A, MIMURA H, INAGAKI K, et al. Morphological stability of Si(001) surface immersed in fluid mixture of ultrapure water and silica powder particles in elastic emission machining[J]. Japanese Journal of Applied Physics, 2005, 44(8R): 5893-5897.
|
[49] |
宋辞, 李圣怡, 李庆宇, 等. 一种用于获取超光滑表面的双转轮式弹性发射加工装置: 中国, 105345640A[P]. 2016-02-24.
SONG C, LI SH Y, LI Q Y, et al.. Double-turning-wheel type elastic emission machining device used for obtaining super-smooth surface: CN, 105345640A[P]. 2016-02-24. (in Chinese)
|
[50] |
SU Y T, WANG S Y, CHAO P Y, et al. Investigation of elastic emission machining process: lubrication effects[J]. Precision Engineering, 1995, 17(3): 164-172. doi: 10.1016/0141-6359(94)00014-Q
|
[51] |
KUBOTA A, MIMURA H, INAGAKI K, et al. Effect of particle morphology on removal rate and surface topography in elastic emission machining[J]. Journal of the Electrochemical Society, 2006, 153(9): G874. doi: 10.1149/1.2220068
|
[52] |
PENG W Q, GUAN CH L, LI SH Y. Ultrasmooth surface polishing based on the hydrodynamic effect[J]. Applied Optics, 2013, 52(25): 6411-6416. doi: 10.1364/AO.52.006411
|
[53] |
彭文强, 关朝亮, 胡旭东, 等. 流体动压超光滑加工关键工艺参数优化[J]. 国防科技大学学报,2017,39(4):179-184. doi: 10.11887/j.cn.201704028
PENG W Q, GUAN CH L, HU X D, et al. Key process parameters optimization of hydrodynamic effect polishing[J]. Journal of National University of Defense Technology, 2017, 39(4): 179-184. (in Chinese) doi: 10.11887/j.cn.201704028
|
[54] |
TAKEI Y, MIMURA H. Effect of focusing flow on stationary spot machining properties in elastic emission machining[J]. Nanoscale Research Letters, 2013, 8(1): 237. doi: 10.1186/1556-276X-8-237
|
[55] |
TAKINO H, KANAOKA M, NOMURA K. Ultraprecision machining of optical surfaces[C]. Proceedings of International Symposium on Ultraprecision Engineering and Nanotechnology, 2011: 5-10.
|
[56] |
OHASHI H, TSUMURA T, OKADA H, et al. Microstitching interferometer and relative angle determinable stitching interferometer for half-meter-long X-ray mirror[J]. Proceedings of SPIE, 2007, 6704: 670405. doi: 10.1117/12.733476
|
[57] |
LAUNDY D, SAWHNEY K, NISTEA I, et al. Development of a multi-lane X-ray mirror providing variable beam sizes[J]. Review of Scientific Instruments, 2016, 87(5): 051802. doi: 10.1063/1.4950732
|
[58] |
DA SILVA J C, PACUREANU A, YANG Y, et al. Efficient concentration of high-energy X-rays for diffraction-limited imaging resolution[J]. Optica, 2017, 4(5): 492-495. doi: 10.1364/OPTICA.4.000492
|
[59] |
WEN M W, KOZHEVNIKOV I V, SIEWERT F, et al. Effect of the surface roughness on X-ray absorption by mirrors operating at extremely small grazing angles[J]. Optics Express, 2018, 26(16): 21003-21018. doi: 10.1364/OE.26.021003
|
[60] |
YAMAUCHI K, YAMAMURA K, MIMURA H, et al. Two-dimensional submicron focusing of hard X-rays by two elliptical mirrors fabricated by plasma chemical vaporization machining and elastic emission machining[J]. Japanese Journal of Applied Physics, 2003, 42(11R): 7129-7134.
|
[61] |
MORI Y, YAMAUCHI K, YAMAMURA K, et al. Fabrication technology of hard X-ray aspherical mirror optics and application to nanospectroscopy[J]. Proceedings of SPIE, 2004, 5193: 11-17. doi: 10.1117/12.515127
|
[62] |
YAMAUCHI K, YAMAMURA K, MIMURA H, et al. Fabrication technology of ultraprecise mirror optics to realize hard X-ray nanobeam[J]. Proceedings of SPIE, 2004, 5533: 116-123. doi: 10.1117/12.567501
|
[63] |
MIMURA H, YUMOTO H, MATSUYAMA S, et al. Surface figuring and measurement methods with spatial resolution close to 0.1 mm for X-ray mirror fabrication[J]. Proceedings of SPIE, 2005, 5921: 59210M. doi: 10.1117/12.623103
|
[64] |
YUMOTO H, MIMURA H, KOYAMA T, et al. Focusing of X-ray free-electron laser pulses with reflective optics[J]. Nature Photonics, 2013, 7(1): 43-47. doi: 10.1038/nphoton.2012.306
|
[65] |
TAKEI Y, MIMURA H. Development of surface profiler for master mandrel of X-ray ellipsoidal mirror[J]. Proceedings of SPIE, 2016, 9962: 99620C.
|
[66] |
MATSUYAMA S, YASUDA S, YAMADA J, et al. 50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors[J]. Scientific Reports, 2017, 7: 46358. doi: 10.1038/srep46358
|
[67] |
张帅, 侯溪. K-B镜面形高精度检测技术研究进展[J]. 中国光学,2020,13(4):660-675. doi: 10.37188/CO.2019-0231
ZHANG SH, HOU X. Research progress of high-precision surface metrology of a K-B mirror[J]. Chinese Optics, 2020, 13(4): 660-675. (in Chinese) doi: 10.37188/CO.2019-0231
|
[68] |
KANAOKA M, HIGUCHI T, YAMAMOTO T, et al.. Ultra-precision surface polishing technologies achieved in the field of ultraviolet optics[C]. Optical Design and Fabrication 2017, Optical Society of America, 2017.
|
[69] |
MURAKAMI K, OSHINO T, KONDO H, et al. Development progress of optics for extreme ultraviolet lithography at Nikon[J]. Journal of Micro/Nanolithography,MEMS,and MOEMS, 2009, 8(4): 041507. doi: 10.1117/1.3238522
|