Citation: | LIN Jing, LI Qi, QIU Meng, HE Qiong, ZHOU Lei. Coupling between Meta-atoms: a new degree of freedom in metasurfaces manipulating electromagnetic waves[J]. Chinese Optics, 2021, 14(4): 717-735. doi: 10.37188/CO.2021-0030 |
[1] |
SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79.
|
[2] |
PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi: 10.1103/PhysRevLett.85.3966
|
[3] |
FANG N, LEE H, SUN CH, et al. Sub–diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537. doi: 10.1126/science.1108759
|
[4] |
CAI W SH, CHETTIAR U K, KILDISHEV A V, et al. Optical cloaking with metamaterials[J]. Nature Photonics, 2007, 1(4): 224-227. doi: 10.1038/nphoton.2007.28
|
[5] |
YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
|
[6] |
CHEN W T, YANG K Y, WANG C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Letters, 2014, 14(1): 225-230. doi: 10.1021/nl403811d
|
[7] |
YIN X B, YE Z L, RHO J, et al. Photonic spin Hall effect at metasurfaces[J]. Science, 2013, 339(6126): 1405-1407. doi: 10.1126/science.1231758
|
[8] |
ZHANG X Q, TIAN ZH, YUE W SH, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities[J]. Advanced Materials, 2013, 25(33): 4567-4572. doi: 10.1002/adma.201204850
|
[9] |
KHORASANINEJAD M, CAPASSO F. Metalenses: versatile multifunctional photonic components[J]. Science, 2017, 358(6367): eaam8100. doi: 10.1126/science.aam8100
|
[10] |
SUN W J, HE Q, SUN SH L, et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations[J]. Light:Science &Applications, 2016, 5(1): e16003.
|
[11] |
MAIER S A, KIK P G, ATWATER H A, et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides[J]. Nature Materials, 2003, 2(4): 229-232. doi: 10.1038/nmat852
|
[12] |
MAIER S A, KIK P G, SWEATLOCK L A, et al. Energy transport in metal nanoparticle plasmon waveguides[J]. MRS Online Proceedings Library, 2003, 777(1): 71.
|
[13] |
LIU N, LANGGUTH L, WEISS T, et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit[J]. Nature Materials, 2009, 8(9): 758-762. doi: 10.1038/nmat2495
|
[14] |
BAO K, MIRIN N A, NORDLANDER P. Fano resonances in planar silver nanosphere clusters[J]. Applied Physics A, 2010, 100(2): 333-339. doi: 10.1007/s00339-010-5861-3
|
[15] |
PRODAN E, RADLOFF C, HALAS N J, et al. A hybridization model for the plasmon response of complex nanostructures[J]. Science, 2003, 302(5644): 419-422. doi: 10.1126/science.1089171
|
[16] |
LIU H, LIU Y M, LI T, et al. Coupled magnetic plasmons in metamaterials[J]. Physica Status Solidi (B)
|
[17] |
FUNSTON A M, NOVO C, DAVIS T J, et al. Plasmon coupling of gold nanorods at short distances and in different geometries[J]. Nano Letters, 2009, 9(4): 1651-1658. doi: 10.1021/nl900034v
|
[18] |
NORDLANDER P, OUBRE C, PRODAN E, et al. Plasmon hybridization in nanoparticle dimers[J]. Nano Letters, 2004, 4(5): 899-903. doi: 10.1021/nl049681c
|
[19] |
SUH W, WANG ZH, FAN SH H. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities[J]. IEEE Journal of Quantum Electronics, 2004, 40(10): 1511-1518. doi: 10.1109/JQE.2004.834773
|
[20] |
FAN SH H, SUH W, JOANNOPOULOS J D. Temporal coupled-mode theory for the Fano resonance in optical resonators[J]. Journal of the Optical Society of America A, 2003, 20(3): 569-572. doi: 10.1364/JOSAA.20.000569
|
[21] |
GIANNINI V, FRANCESCATO Y, AMRANIA H, et al. Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach[J]. Nano Letters, 2011, 11(7): 2835-2840. doi: 10.1021/nl201207n
|
[22] |
FANO U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review, 1961, 124(6): 1866-1878. doi: 10.1103/PhysRev.124.1866
|
[23] |
DING F, PORS A, BOZHEVOLNYI S I. Gradient metasurfaces: a review of fundamentals and applications[J]. Reports on Progress in Physics, 2018, 81(2): 026401. doi: 10.1088/1361-6633/aa8732
|
[24] |
JACKSON J D. Classical Electrodynamics[M]. 3rd ed. New York: Wiley, 1999.
|
[25] |
PAPASIMAKIS N, FEDOTOV V A, MARINOV K, et al. Gyrotropy of a metamolecule: wire on a torus[J]. Physical Review Letters, 2009, 103(9): 093901. doi: 10.1103/PhysRevLett.103.093901
|
[26] |
DECKER M, STAUDE I, FALKNER M, et al. High-efficiency dielectric Huygens’ surfaces[J]. Advanced Optical Materials, 2015, 3(6): 813-820. doi: 10.1002/adom.201400584
|
[27] |
BOHREN C F, HUFFMAN D R. Absorption and Scattering of Light by Small Particles[M]. New York: John Wiley & Sons, 1983.
|
[28] |
HOLLOWAY C L, KUESTER E F, BAKER-JARVIS J, et al. A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2596-2603. doi: 10.1109/TAP.2003.817563
|
[29] |
ZHAO Q, ZHOU J, ZHANG F L, et al. Mie resonance-based dielectric metamaterials[J]. Materials Today, 2009, 12(12): 60-69. doi: 10.1016/S1369-7021(09)70318-9
|
[30] |
DEVLIN R C, KHORASANINEJAD M, CHEN W T, et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(38): 10473-10478. doi: 10.1073/pnas.1611740113
|
[31] |
LIU N, LIU H, ZHU SH N, et al. Stereometamaterials[J]. Nature Photonics, 2009, 3(3): 157-162. doi: 10.1038/nphoton.2009.4
|
[32] |
BARANOV D G, MAKAROV S V, KRASNOK A E, et al. Tuning of near-and far-field properties of all‐dielectric dimer nanoantennas via ultrafast electron-hole plasma photoexcitation[J]. Laser &Photonics Reviews, 2016, 10(6): 1009-1015.
|
[33] |
PANIAGUA-DOMÍNGUEZ R, YU Y F, KHAIDAROV E, et al. A metalens with a near-unity numerical aperture[J]. Nano Letters, 2018, 18(3): 2124-2132. doi: 10.1021/acs.nanolett.8b00368
|
[34] |
ZHANG F, PU M B, LI X, et al. All‐dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions[J]. Advanced Functional Materials, 2017, 27(47): 1704295. doi: 10.1002/adfm.201704295
|
[35] |
LUO X G. Subwavelength artificial structures: opening a new era for engineering optics[J]. Advanced Materials, 2019, 31(4): 1804680. doi: 10.1002/adma.201804680
|
[36] |
DRAINE B T, FLATAU P J. Discrete-dipole approximation for scattering calculations[J]. Journal of the Optical Society of America A, 1994, 11(4): 1491-1499. doi: 10.1364/JOSAA.11.001491
|
[37] |
KELLY K L, CORONADO E, ZHAO L L, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. The Journal of Physical Chemistry B, 2003, 107(3): 668-677. doi: 10.1021/jp026731y
|
[38] |
MONTICONE F, ALÙ A. Metamaterial, plasmonic and nanophotonic devices[J]. Reports on Progress in Physics, 2017, 80(3): 036401. doi: 10.1088/1361-6633/aa518f
|
[39] |
ENGHETA N, SALANDRINO A, ALV A. Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors[J]. Physical Review Letters, 2005, 95(9): 095504.
|
[40] |
SHI J W, MONTICONE F, ELIAS S, et al. Modular assembly of optical nanocircuits[J]. Nature Communications, 2014, 5: 3896. doi: 10.1038/ncomms4896
|
[41] |
RYBIN M V, FILONOV D S, BELOV P A, et al. Switching from visibility to invisibility via Fano resonances: theory and experiment[J]. Scientific Reports, 2015, 5(1): 1-6.
|
[42] |
LIMONOV M F, RYBIN M V, PODDUBNY A N, et al. Fano resonances in photonics[J]. Nature Photonics, 2017, 11(9): 543-554. doi: 10.1038/nphoton.2017.142
|
[43] |
JOANNOPOULOS J D, JOHNSON S G, WINN J N, et al.. Photonic Crystals: Molding the Flow of Light[M]. 2nd ed. Princeton: Princeton University Press, 2008, .
|
[44] |
GUPTA V P. Principles and Applications of Quantum Chemistry[M]. Amsterdam: Academic Press, 2016.
|
[45] |
LIDORIKIS E, SIGALAS M M, ECONOMOU E N, et al. Tight-binding parametrization for photonic band gap materials[J]. Physical Review Letters, 1998, 81(7): 1405.
|
[46] |
HARA Y, MUKAIYAMA T, TAKEDA K, et al. Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres[J]. Physical Review Letters, 2005, 94(20): 203905. doi: 10.1103/PhysRevLett.94.203905
|
[47] |
NOTOMI M, KURAMOCHI E, TANABE T. Large-scale arrays of ultrahigh-Q coupled nanocavities[J]. Nature Photonics, 2008, 2(12): 741-747. doi: 10.1038/nphoton.2008.226
|
[48] |
BUSCH K, MINGALEEV S F, GARCIA-MARTIN A, et al. The Wannier function approach to photonic crystal circuits[J]. Journal of Physics:Condensed Matter, 2003, 15(30): R1233-R1256. doi: 10.1088/0953-8984/15/30/201
|
[49] |
LEUENBERGER D, FERRINI R, HOUDRÉ R. Ab initio tight-binding approach to photonic-crystal based coupled cavity waveguides[J]. Journal of Applied Physics, 2004, 95(3): 806-809. doi: 10.1063/1.1635668
|
[50] |
RAMAN A, FAN SH H. Photonic band structure of dispersive metamaterials formulated as a Hermitian eigenvalue problem[J]. Physical Review Letters, 2010, 104(8): 087401. doi: 10.1103/PhysRevLett.104.087401
|
[51] |
XI B, XU H, XIAO SH Y, et al. Theory of coupling in dispersive photonic systems[J]. Physical Review B, 2011, 83(16): 165115. doi: 10.1103/PhysRevB.83.165115
|
[52] |
XI B, QIU M, XIAO SH Y, et al. Effective model for plasmonic coupling: a rigorous derivation[J]. Physical Review B, 2014, 89(3): 035110. doi: 10.1103/PhysRevB.89.035110
|
[53] |
DAVIS T J, HENTSCHEL M, LIU N, et al. Analytical model of the three-dimensional plasmonic ruler[J]. ACS Nano, 2012, 6(2): 1291-8.
|
[54] |
BABA T. Slow light in photonic crystals[J]. Nature Photonics, 2008, 2(8): 465-473. doi: 10.1038/nphoton.2008.146
|
[55] |
PAPASIMAKIS N, ZHELUDEV N I. Metamaterial-induced transparency: sharp fano resonances and slow light[J]. Optics and Photonics News, 2009, 20(10): 22-27. doi: 10.1364/OPN.20.10.000022
|
[56] |
QIU M, JIA M, MA SH J, et al. Angular dispersions in terahertz metasurfaces: physics and applications[J]. Physical Review Applied, 2018, 9(5): 054050. doi: 10.1103/PhysRevApplied.9.054050
|
[57] |
HAO J M, WANG J, LIU X L, et al. High performance optical absorber based on a plasmonic metamaterial[J]. Applied Physics Letters, 2010, 96(25): 251104. doi: 10.1063/1.3442904
|
[58] |
LALANNE P, LEMERCIER-LALANNE D. On the effective medium theory of subwavelength periodic structures[J]. Journal of Modern Optics, 1996, 43(10): 2063-2085. doi: 10.1080/09500349608232871
|
[59] |
ZHANG X Y, LI Q, LIU F F, et al. Controlling angular dispersions in optical metasurfaces[J]. Light:Science &Applications, 2020, 9: 76.
|
[60] |
KRISTENSEN P T, HERRMANN K, INTRAVAIA F, et al. Modeling electromagnetic resonators using quasinormal modes[J]. Advances in Optics and Photonics, 2020, 12(3): 612-708. doi: 10.1364/AOP.377940
|
[61] |
CHING E S C, LEUNG P T, YOUNG K. Optical Processes in Microcavities-the Role of Quasi-Normal Modes[M]. CHANG R K, CAMPILLO A J. Optical Processes in Microcavities. Singapore: World Scientific, 1996.
|
[62] |
KRISTENSEN P T, DE LASSON J R, HEUCK M, et al. On the theory of coupled modes in optical cavity-waveguide structures[J]. Journal of Lightwave Technology, 2017, 35(19): 4247-4259. doi: 10.1109/JLT.2017.2714263
|
[63] |
TRØST KRISTENSEN P, HEUCK M, MØRK J. Optimal switching using coherent control[J]. Applied Physics Letters, 2013, 102(4): 041107. doi: 10.1063/1.4789372
|
[64] |
KRISTENSEN P T, DE LASSON J R, GREGERSEN N. Calculation, normalization, and perturbation of quasinormal modes in coupled cavity-waveguide systems[J]. Optics Letters, 2014, 39(22): 6359-6362. doi: 10.1364/OL.39.006359
|
[65] |
LIN J, QIU M, ZHANG X Y, et al. Tailoring the lineshapes of coupled plasmonic systems based on a theory derived from first principles[J]. Light:Science &Applications, 2020, 9: 158.
|