Citation: | ZHONG Zhi-jian, LI Chen-yi, LI Shi-guang, GUO Lei, WEI Ya-yi. Budget analysis of focus control in advanced lithography (I) -optical path[J].Chinese Optics, 2021, 14(5): 1104-1119.doi:10.37188/CO.2021-0033 |
[1] |
China Taiwan Semiconductor Manufacturing Company. TSMC’S 5 nm (FinFET) technology[EB/OL]. [2021-04-17]
https://www.tsmc.com/english/dedicatedFoundry/technology/logic/l_5nm.
|
[2] |
DAN HUTCHESON G. Moore’s law, lithography, and how optics drive the semiconductor industry[J].
Proceedings of SPIE, 2018, 10583: 1058303.
|
[3] |
郭杰, 李世光, 赵焱, 等. 电子束硅片图形检测系统中的纳米级对焦控制技术[J]. 中国光学,2019,12(2):242-255.
doi:10.3788/co.20191202.0242
GUO J, LI SH G, ZHAO Y,
et al. Nano-scale focus control technology in electron beam wafer pattern inspection system[J].
Chinese Optics, 2019, 12(2): 242-255. (in Chinese)
doi:10.3788/co.20191202.0242
|
[4] |
孙裕文, 李世光, 叶甜春, 等. 纳米光刻中调焦调平测量系统的工艺相关性[J]. 光学学报,2016,36(8):0812001.
doi:10.3788/AOS201636.0812001
SUN Y W, LI SH G, YE T CH,
et al. Process dependency of focusing and leveling measurement system in nanoscale lithography[J].
Acta Optica Sinica, 2016, 36(8): 0812001. (in Chinese)
doi:10.3788/AOS201636.0812001
|
[5] |
SHUMWAY J, NEAL N, MEYERS S,
et al. Reduction and control of intrafield focus variation on 7nm technology[J].
Proceedings of SPIE, 2018, 10147: 101470B.
|
[6] |
JANG J H, PARK T, PARK K D,
et al. Focus control budget analysis for critical layers of flash devices[J].
Proceedings of SPIE, 2014, 9050: 90502F.
|
[7] |
段晨, 宗明成, 范伟, 等. 浸没式光刻机对焦控制技术研究[J]. 光学学报,2018,38(9):0912002.
doi:10.3788/AOS201838.0912002
DUAN CH, ZONG M CH, FAN W,
et al. Focus control technology in immersion lithography[J].
Acta Optica Sinica, 2018, 38(9): 0912002. (in Chinese)
doi:10.3788/AOS201838.0912002
|
[8] |
姚长呈, 巩岩. 深紫外光刻投影物镜温度特性研究[J]. 中国 ,2016,43(5):0516001.
doi:10.3788/CJL201643.0516001
YAO CH CH, GONG Y. Research on temperature distribution of deep ultraviolet lithographic projection objective[J].
Chinese Journal of Lasers, 2016, 43(5): 0516001. (in Chinese)
doi:10.3788/CJL201643.0516001
|
[9] |
VAN HAREN R, STEINERT S, MOURAILLE O,
et al. The mask contribution as part of the intra-field on-product overlay performance[J].
Proceedings of SPIE, 2018, 11518: 1151813.
|
[10] |
MASTENBROEK M. EUV industrialization high volume manufacturing with NXE3400B[J].
Proceedings of SPIE, 2018, 10809: 1080904.
|
[11] |
WAGNER C, HARNED N. Lithography gets extreme[J].
Nature Photonics, 2010, 4(1): 24-26.
doi:10.1038/nphoton.2009.251
|
[12] |
甘雨, 张方, 朱思羽, 等. 光刻机照明系统光瞳特性参数的评估算法[J]. 中国 ,2019,46(3):0304007.
doi:10.3788/CJL201946.0304007
GAN Y, ZHANG F, ZHU S Y,
et al. Evaluation algorithm of pupil characteristic parameters in lithography illumination system[J].
Chinese Journal of Lasers, 2019, 46(3): 0304007. (in Chinese)
doi:10.3788/CJL201946.0304007
|
[13] |
LOWISCH M, KUERZ P, CONRADI Q,
et al.. Optics for ASML’s NXE: 3300B platform[C].
Proceedings of SPIE, 2013, 8679: 86791H.
|
[14] |
HENDRICKX E, GRONHEID R, HERMANS J,
et al. Readiness of EUV lithography for insertion into manufacturing: the IMEC EUV program[J].
Journal of Photopolymer Science and Technology, 2013, 26(5): 587-593.
doi:10.2494/photopolymer.26.587
|
[15] |
LEE S H, ZHANG ZH Y. Process window study with various illuminations for EUV lithography applications[J].
Proceedings of SPIE, 2007, 6517: 65172P.
doi:10.1117/12.713447
|
[16] |
MACK C, CHICHESTER W.
Fundamental Principles of Optical Lithography:
the Science of Microfabrication[M]. Chichester: Wiley, 2008: 60.
|
[17] |
ZHAI A P, CAO Y P, CHEN B,
et al. A novel method of partial coherence measuring for the illumination system and its defocus performance analysis[J].
Optik, 2013, 124(23): 6313-6317.
doi:10.1016/j.ijleo.2013.06.009
|
[18] |
DE SIMONE D, KLJUCAR L, DAS P,
et al. 28 nm pitch single exposure patterning readiness by metal oxide resist on 0.33 NA EUV lithography[J].
Proceedings of SPIE, 2021, 11609: 116090Q.
|
[19] |
KNEER B, MIGURA S, KAISER W,
et al. EUV lithography optics for sub-9 nm resolution[J].
Proceedings of SPIE, 2015, 9422: 94221G.
doi:10.1117/12.2175488
|
[20] |
CONLEY W, ALAGNA P, SHIEH J,
et al. The impact of lower light source bandwidth on sub-10 nm process node features[J].
Proceedings of SPIE, 2017, 10147: 1014707.
|
[21] |
RUOFF V D M J, NEUMANN J T, SCHMITT-WEAVER E,
et al. Polarization-induced astigmatism caused by topographic masks[J].
Proceedings of SPIE, 2007, 6730: 67301T.
|
[22] |
TANABE H, SATO S, TAKAHASHI A. Fast 3D lithography simulation by convolutional neural network[J].
Proceedings of SPIE, 2020, 11518: 115180L.
|
[23] |
HAO Y Y, LI Y Q, LI T,
et al. The calculation and representation of polarization aberration induced by 3D mask in lithography simulation[J].
Proceedings of SPIE, 2017, 10460: 104601J.
|
[24] |
韦亚一. 超大规模集成电路先进光刻理论与应用[M]. 北京: 科学出版社, 2016: 103-105.
WEI Y Y.
Advanced Lithography Theory and Application for VLSI[M].
Beijing: Science Press, 2016: 103-105. (in Chinese)
|
[25] |
AZPIROZ J T, ROSENBLUTH A E. Impact of sub-wavelength electromagnetic diffraction in optical lithography for semiconductor chip manufacturing[C].
Proceedings of the 2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference, IEEE, 2013: 1-5.
|
[26] |
SAIED M, FOUSSADIER F, BELLEDENT J,
et al. Three-dimensional mask effects and source polarization impact on OPC model accuracy and process window[J].
Proceedings of SPIE, 2007, 6520: 65204Q.
doi:10.1117/12.715120
|
[27] |
YAN P Y. Understanding Bossung curve asymmetry and focus shift effect in EUV lithography[J].
Proceedings of SPIE, 2002, 4562: 279-287.
doi:10.1117/12.458302
|
[28] |
ERDMANN A. Topography effects and wave aberrations in advanced PSM technology[J].
Proceedings of SPIE, 2001, 4346: 345.
doi:10.1117/12.435734
|
[29] |
BURKHARDT M, RAGHUNATHAN A. Best focus shift mechanism for thick masks[J].
Proceedings of SPIE, 2015, 9422: 94220X.
|
[30] |
NAKAJIMA Y, SATO T, INANAMI R,
et al. Aberration budget in extreme ultraviolet lithography[J].
Proceedings of SPIE, 2008, 6921: 69211A.
|
[31] |
ERDMANN A, EVANSCHITZKY P, FÜHNER T. Mask diffraction analysis and optimization for EUV masks[J].
Proceedings of SPIE, 2009, 7271: 72711E.
|
[32] |
ERDMANN A, EVANSCHITZKY P, NEUMANN J T,
et al. Mask-induced best-focus shifts in deep ultraviolet and extreme ultraviolet lithography[J].
Journal of Micro/Nanolithography, 2016, 15(2): 021205.
doi:10.1117/1.JMM.15.2.021205
|
[33] |
HAQUE R R, LEVINSON Z, SMITH B W. 3D mask effects of absorber geometry in EUV lithography systems[J].
Proceedings of SPIE, 2016, 9776: 97760F.
|
[34] |
MOCHI I, PHILIPSEN V, GALLAGHER E,
et al. Assist features: placement, impact, and relevance for EUV imaging[J].
Proceedings of SPIE, 2016, 9776: 97761S.
doi:10.1117/12.2220025
|
[35] |
BOUMA A, MIYAZAKI J, VAN VEEN M,
et al. Impact of mask absorber and quartz over-etch on mask 3D induced best focus shifts[J].
Proceedings of SPIE, 2014, 9231: 92310S.
doi:10.1117/12.2068155
|
[36] |
SZUCS A, PLANCHOT J, FARYS V,
et al. Best focus shift mitigation for extending the depth of focus[J].
Proceedings of SPIE, 2013, 8683: 868313.
doi:10.1117/12.2011114
|
[37] |
INOUE S, ITOH M, ASANO M,
et al. Desirable reticle flatness from focus deviation standpoint in optical lithography[J].
Journal of Micro/Nanolithography,
MEMS,
and MOEMS, 2002, 1(3): 307.
doi:10.1117/1.1503806
|
[38] |
LIU P, XIE X B, LIU W,
et al. Fast 3D thick mask model for full-chip EUVL simulations[J].
Proceedings of SPIE, 2013, 8679: 86790W.
doi:10.1117/12.2010818
|
[39] |
SEARS M K, SMITH B W. Modeling the effects of pupil-manipulated spherical aberration in optical nanolithography[J].
Journal of Micro/Nanolithography,
MEMS,
and MOEMS, 2013, 12(1): 013008.
doi:10.1117/1.JMM.12.1.013008
|
[40] |
BRUNNER T A. Impact of lens aberrations on optical lithography[J].
IBM Journal of Research and Development, 1997, 41(1-2): 57-67.
|
[41] |
BEKAERT J, VAN LOOK L, VANDENBERGHE G,
et al. Characterization and control of dynamic lens heating effects under high volume manufacturing conditions[J].
Proceedings of SPIE, 2011, 7973: 79730V.
doi:10.1117/12.881609
|
[42] |
LEVINSON H J.
Principles of Lithography[M]. 3rd ed. Bellingham, WA: SPIE Press, 2011: 40-41.
|
[43] |
李艳秋, 刘岩, 刘丽辉. 16 nm极紫外光刻物镜热变形对成像性能影响的研究[J]. 光学学报,2019,39(1):0122001.
doi:10.3788/AOS201939.0122001
LI Y Q, LIU Y, LIU L H. Effect of thermal deformation on imaging performance for 16 nm extreme ultraviolet lithography objective[J].
Acta Optica Sinica, 2019, 39(1): 0122001. (in Chinese)
doi:10.3788/AOS201939.0122001
|
[44] |
SEARS M K, BEKAERT J, SMITH B W. Lens wavefront compensation for 3D photomask effects in subwavelength optical lithography[J].
Applied Optics, 2013, 52(3): 314-322.
doi:10.1364/AO.52.000314
|
[45] |
HO G H, CHENG A, CHEN CH J,
et al. Lens-heating-induced focus drift of I-line step and scan: correction and control in a manufacturing environment[J].
Proceedings of SPIE, 2001, 4344: 289-296.
doi:10.1117/12.436722
|
[46] |
王帆, 王向朝, 马明英, 等. 光刻机投影物镜像差的现场测量技术[J]. 与光电子学进展,2004,41(6):33-37.
WANG F, WANG X ZH, MA M Y,
et al. In-situ measurement methods of lens aberration[J].
Laser&
Optoelectronics Progress, 2004, 41(6): 33-37. (in Chinese)
|
[47] |
CUI Y T. Fine-tune lens-heating-induced focus drift with different process and illumination settings[J].
Proceedings of SPIE, 2001, 4346: 1369-1378.
doi:10.1117/12.435675
|
[48] |
CHANG Y S, WU M J, HUNG M Y,
et al. Polygate within wafer CD uniformity improvement by the minimization of lens heating effect[J].
Proceedings of SPIE, 2001, 4404: 26-32.
doi:10.1117/12.425219
|
[49] |
CHENG B J, LIU H CH, CUI Y T,
et al. Improving image control by correcting the lens-heating focus drift[J].
Proceedings of SPIE, 2000, 4000: 818-826.
doi:10.1117/12.389075
|
[50] |
LEE S H, SHROFF Y, CHANDHOK M. Flare and lens aberration requirements for EUV lithographic tools[J].
Proceedings of SPIE, 2005, 5751: 707-714.
doi:10.1117/12.604870
|
[51] |
MONTCALM C, BAJT S, MIRKARIMI P B,
et al. Multilayer reflective coatings for extreme-ultraviolet lithography[J].
Proceedings of SPIE, 1998, 3331: 42-51.
doi:10.1117/12.309600
|
[52] |
FINDERS J. The impact of Mask 3D and Resist 3D effects in optical lithography[J].
Proceedings of SPIE, 2014, 9052: 905205.
|
[53] |
PENG A, HSU S D, HOWELL R C,
et al. Lithography-defect-driven source-mask optimization solution for full-chip optical proximity correction[J].
Applied Optics, 2021, 60(3): 616-620.
doi:10.1364/AO.408405
|
[54] |
LIU X F, HOWELL R, HSU S,
et al. EUV source-mask optimization for 7nm node and beyond[J].
Proceedings of SPIE, 2014, 9048: 90480Q.
doi:10.1117/12.2047584
|
[55] |
WU Q. Key points in 14 nm photolithographic process development, challenges and process window capability[C].
Proceedings of 2017 China Semiconductor Technology International Conference, IEEE, 2017: 1-6.
|
[56] |
JIA N N, YANG S H, KIM S,
et al. Study of lens heating behavior and thick mask effects with a computational method[J].
Proceedings of SPIE, 2014, 9052: 905209.
|
[57] |
王丽萍. 长春光机所承担的国家科技重大专项项目“极紫外光刻关键技术研究”通过验收[J]. 分析仪器,2017(4):96.
WANG L P. The project of “study of key technology for extreme-ultraviolet lithography” passed the acceptance inspection[J].
Analytical Instrumentation, 2017(4): 96. (in Chinese)
|
[58] |
DENG X J, CHAO A, FEIKES J,
et al. Experimental demonstration of the mechanism of steady-state microbunching[J].
Nature, 2021, 590(7847): 576-579.
doi:10.1038/s41586-021-03203-0
|