Citation: | YU Xiao-chang, XU Ya-qing, CAI Jia-chen, YUAN Meng-qi, GAO Bo, YU Yi-ting. Progress of tunable micro-nano filtering structures[J].Chinese Optics, 2021, 14(5): 1069-1088.doi:10.37188/CO.2021-0044 |
[1] |
吴正容, 白广周. 美国弹道导弹预警探测识别技术发展分析[J]. 飞行器测控学报,2016,35(6):415-421.
WU ZH R, BAI G ZH. Analysis of US ballistic missile warning and recognition technology development[J].
Journal of Spacecraft TT&
C Technology, 2016, 35(6): 415-421. (in Chinese)
|
[2] |
余晓畅, 赵建村, 虞益挺. 像素级光学滤波-探测集成器件的研究进展[J]. 光学 精密工程,2019,27(5):999-1012.
doi:10.3788/OPE.20192705.0999
YU X CH, ZHAO J C, YU Y T. Research progress of pixel-level integrated devices for spectral imaging[J].
Optics and Precision Engineering, 2019, 27(5): 999-1012. (in Chinese)
doi:10.3788/OPE.20192705.0999
|
[3] |
DICKSON W, WURTZ G A, EVANS P R,
et al. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal[J].
Nano Letters, 2008, 8(1): 281-286.
doi:10.1021/nl072613g
|
[4] |
KNIGHT M W, KING N S, LIU L F,
et al. Aluminum for plasmonics[J].
ACS Nano, 2014, 8(1): 834-840.
doi:10.1021/nn405495q
|
[5] |
TSENG M L, YANG J, SEMMLINGER M,
et al. Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response[J].
Nano Letters, 2017, 17(10): 6034-6039.
doi:10.1021/acs.nanolett.7b02350
|
[6] |
HSIAO V K S, ZHENG Y B, JULURI B K,
et al. Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals[J].
Advanced Materials, 2008, 20(18): 3528-3532.
doi:10.1002/adma.200800045
|
[7] |
SI G Y, ZHAO Y H, LEONG E S P,
et al. Liquid-crystal-enabled active plasmonics: a review[J].
Materials, 2014, 7(2): 1296-1317.
doi:10.3390/ma7021296
|
[8] |
HSIAO Y C, SU CH W, YANG Z H,
et al. Electrically active nanoantenna array enabled by varying the molecular orientation of an interfaced liquid crystal[J].
RSC Advances, 2016, 6(87): 84500-84504.
doi:10.1039/C6RA11428H
|
[9] |
CHEN K P, YE S CH, YANG CH Y,
et al. Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals[J].
Optics Express, 2016, 24(15): 16815-16821.
doi:10.1364/OE.24.016815
|
[10] |
GILARDI G, DONISI D, SERPENGÜZEL A,
et al. Liquid-crystal tunable filter based on sapphire microspheres[J].
Optics Letters, 2009, 34(21): 3253-3255.
doi:10.1364/OL.34.003253
|
[11] |
KOMAR A, FANG ZH, BOHN J,
et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals[J].
Applied Physics Letters, 2017, 110(7): 071109.
doi:10.1063/1.4976504
|
[12] |
LIU Y J, SI G Y, LEONG E S P,
et al. Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays[J].
Advanced Materials, 2012, 24(23): OP131-OP135.
|
[13] |
FRANKLIN D, CHEN Y, VAZQUEZ-GUARDADO A,
et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces[J].
Nature Communications, 2015, 6: 7337.
doi:10.1038/ncomms8337
|
[14] |
XIE Z W, YANG J H, VASHISTHA V,
et al. Liquid-crystal tunable color filters based on aluminum metasurfaces[J].
Optics Express, 2017, 25(24): 30764-30770.
doi:10.1364/OE.25.030764
|
[15] |
吴梦, 梁西银, 孙对兄, 等. 基于表面等离子激元的非对称矩形环腔电可调滤波器设计[J]. 光学学报,2020,40(14):1423001.
doi:10.3788/AOS202040.1423001
WU M, LIANG X Y, SUN D X,
et al. Design of asymmetric rectangular ring resonance cavity electrically adjustable filter based on surface plasmon polaritons[J].
Acta Optica Sinica, 2020, 40(14): 1423001. (in Chinese)
doi:10.3788/AOS202040.1423001
|
[16] |
BARTHOLOMEW R, WILLIAMS C, KHAN A,
et al. Plasmonic nanohole electrodes for active color tunable liquid crystal transmissive pixels[J].
Optics Letters, 2017, 42(14): 2810-2813.
doi:10.1364/OL.42.002810
|
[17] |
曹水艳. 表面等离子体结构聚焦和吸收特性的研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2013.
CAO SH Y. Study on the property of focusing and absorption of plasmonic nanostrucutres[D]. Changchun: Changchun Institute of Optics, Fine Mehcanics and Physics, Chinese Academy of Sciences, 2013. (in Chinese)
|
[18] |
LEE Y, PARK M K, KIM S,
et al. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator[J].
ACS Photonics, 2017, 4(8): 1954-1966.
doi:10.1021/acsphotonics.7b00249
|
[19] |
DRIENCOURT L, FEDERSPIEL F, KAZAZIS D,
et al. Electrically tunable multicolored filter using birefringent plasmonic resonators and liquid crystals[J].
ACS Photonics, 2020, 7(2): 444-453.
doi:10.1021/acsphotonics.9b01404
|
[20] |
RYU S H, YOON D K. Switchable plasmonic film using nanoconfined liquid crystals[J].
ACS Applied Materials&
Interfaces, 2017, 9(29): 25057-25061.
|
[21] |
樊丽娜, 马军山. 兼具反射和透射模式的共振波导光栅滤波器的设计[J]. 中国光学,2020,13(5):1147-1157.
doi:10.37188/CO.2020-0072
FAN L N, MA J SH. Design of resonant waveguide grating filter with reflection and transmission modes[J].
Chinese Optics, 2020, 13(5): 1147-1157. (in Chinese)
doi:10.37188/CO.2020-0072
|
[22] |
REN ZH B, SUN Y H, LIN Z H,
et al. Tunable guided-mode resonance filters for multi-primary colors based on polarization rotation[J].
IEEE Photonics Technology Letters, 2018, 30(21): 1858-1861.
doi:10.1109/LPT.2018.2870059
|
[23] |
CHANG L M, YIN CH C, LIN C Y,
et al. Tunable polarizing reflector based on liquid crystal-clad guided-mode resonator[J].
Liquid Crystals, 2021, 48(6): 806-811.
doi:10.1080/02678292.2020.1817586
|
[24] |
LIN T Y, LIN J H, LIN J D,
et al. All-optical and polarization-independent tunable guided-mode resonance filter based on a dye-doped liquid crystal incorporated with photonic crystal nanostructure[J].
Journal of Lightwave Technology, 2020, 38(4): 820-826.
doi:10.1109/JLT.2019.2950098
|
[25] |
赵文宇. 超表面微纳结构的相位操控及模式耦合特性[D]. 哈尔滨: 哈尔滨工业大学, 2017.
ZHAO W Y. Phase manipulation and mode coupling in metasurface nanostructures[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
|
[26] |
周紫葳. 液晶基可调谐全介质超表面的研究[D]. 北京: 北京邮电大学, 2019.
ZHOU Z W. Tunable all-dielectric metasurfaces based on liquid crystals[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. (in Chinese)
|
[27] |
张庆. 纳米尺度光场调控: 全介质超表面及二维材料极化激元[D]. 绵阳: 中国工程物理研究院, 2019.
ZHANG Q. Light Manipulation at the nanoscale: all dielectric metasurfaces and two-dimensional material polaritons[D]. Mianyang: China Academy of Engineering Physics, 2019. (in Chinese)
|
[28] |
YU N F, GENEVET P, KATS M A,
et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J].
Science, 2011, 334(6054): 333-337.
doi:10.1126/science.1210713
|
[29] |
SUN M Y, XU X W, SUN X W,
et al. Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals[J].
Scientific Reports, 2019, 9(1): 8673.
doi:10.1038/s41598-019-45091-5
|
[30] |
SAUTTER J, STAUDE I, DECKER M,
et al. Active tuning of all-dielectric metasurfaces[J].
ACS Nano, 2015, 9(4): 4308-4315.
doi:10.1021/acsnano.5b00723
|
[31] |
PARK J W, EOM S H, LEE H,
et al. Optical properties of pseudobinary GeTe, Ge
2Sb
2Te
5, GeSb
2Te
4, GeSb
4Te
7, and Sb
2Te
3from ellipsometry and density functional theory[J].
Physical Review B, 2009, 80(11): 115209.
doi:10.1103/PhysRevB.80.115209
|
[32] |
KARVOUNIS A, GHOLIPOUR B, MACDONALD K F,
et al. All-dielectric phase-change reconfigurable metasurface[J].
Applied Physics Letters, 2016, 109(5): 051103.
doi:10.1063/1.4959272
|
[33] |
王曼婷. 基于相变材料的光调制器设计[D]. 北京: 北京邮电大学, 2019.
WANG M T. Design of optical modulator based on phase change materials[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. (in Chinese)
|
[34] |
陈婧. 纳米尺度下锗锑碲相变材料制备及光电性质[D]. 南京: 南京大学, 2014.
CHEN J. The optical and electrical properties of Ge
2Sb
2Te
5thin films in nanoscale[D]. Nanjing: Nanjing University, 2014. (in Chinese)
|
[35] |
HOSSEINI P, WRIGHT C D, BHASKARAN H. An optoelectronic framework enabled by low-dimensional phase-change films[J].
Nature, 2014, 511(7508): 206-211.
doi:10.1038/nature13487
|
[36] |
RÍOS C, STEGMAIER M, HOSSEINI P,
et al. Integrated all-photonic non-volatile multi-level memory[J].
Nature Photonics, 2015, 9(11): 725-732.
doi:10.1038/nphoton.2015.182
|
[37] |
CHENG ZH G, RÍOS C, PERNICE W H P,
et al. On-chip photonic synapse[J].
Science Advances, 2017, 3(9): e1700160.
doi:10.1126/sciadv.1700160
|
[38] |
WANG Q, ROGERS E T F, GHOLIPOUR B,
et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J].
Nature Photonics, 2016, 10(1): 60-65.
doi:10.1038/nphoton.2015.247
|
[39] |
ZHANG W W, QI H, SUN A T,
et al. Periodic trapezoidal VO
2-Ge multilayer absorber for dynamic radiative cooling[J].
Optics Express, 2020, 28(14): 20609-20623.
doi:10.1364/OE.396171
|
[40] |
LEI L, LOU F, TAO K Y,
et al. Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition[J].
Photonics Research, 2019, 7(7): 734-741.
doi:10.1364/PRJ.7.000734
|
[41] |
DRISCOLL T, BASOV D N, STARR A F,
et al. Free-space microwave focusing by a negative-index gradient lens[J].
Applied Physics Letters, 2006, 88(8): 081101.
doi:10.1063/1.2174088
|
[42] |
DRISCOLL T, PALIT S, QAZILBASH M M,
et al. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide[J].
Applied Physics Letters, 2008, 93(2): 024101.
doi:10.1063/1.2956675
|
[43] |
周良. 开环谐振器在滤波器及天线中的应用研究[D]. 南京: 南京航空航天大学, 2011.
ZHOU L. Research on split-ring resonator for filter and antenna applications[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese)
|
[44] |
CHAE J Y, LEE D, LEE D W,
et al. Direct transfer of thermochromic tungsten-doped vanadium dioxide thin-films onto flexible polymeric substrates[J].
Applied Surface Science, 2021, 545: 148937.
doi:10.1016/j.apsusc.2021.148937
|
[45] |
孙洪君, 王敏焕, 边继明, 等. MBE技术蓝宝石衬底上生长VO
2薄膜及其太赫兹和金属–绝缘体相变特性研究[J]. 无机材料学报,2017,32(4):437-442.
doi:10.15541/jim20160456
SUN H J, WANG M H, BIAN J M,
et al. Terahertz and metal-insulator transition properties of VO
2film grown on sapphire substrate with MBE[J].
Journal of Inorganic Materials, 2017, 32(4): 437-442. (in Chinese)
doi:10.15541/jim20160456
|
[46] |
LI ZH Y, ZHOU Y, QI H,
et al. Correlated perovskites as a new platform for super-broadband-tunable photonics[J].
Advanced Materials, 2016, 28(41): 9117-9125.
doi:10.1002/adma.201601204
|
[47] |
LIN J, LAI M L, DOU L T,
et al. Thermochromic halide perovskite solar cells[J].
Nature Materials, 2018, 17(3): 261-267.
doi:10.1038/s41563-017-0006-0
|
[48] |
钱晶, 付中玉, 李昕. 导电聚合物基电致变色器件的研究进展[J]. 化学研究与应用,2008,20(11):1397-1404.
doi:10.3969/j.issn.1004-1656.2008.11.002
QIAN J, FU ZH Y, LI X. Research progress of electrochromic devices based on conducting polymers[J].
Chemical Research and Application, 2008, 20(11): 1397-1404. (in Chinese)
doi:10.3969/j.issn.1004-1656.2008.11.002
|
[49] |
DEB S K. A novel electrophotographic system[J].
Applied Optics, 1969, 8 Suppl 1: 192-195.
|
[50] |
HAUCH A, GEORG A, BAUMGÄRTNER S,
et al. New photoelectrochromic device[J].
Electrochimica Acta, 2001, 46(13-14): 2131-2136.
doi:10.1016/S0013-4686(01)00391-7
|
[51] |
YANG P H, SUN P, CHAI ZH SH,
et al. Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage[J].
Angewandte Chemie International Edition, 2014, 53(44): 11935-11939.
doi:10.1002/anie.201407365
|
[52] |
YAMAZAKI S, ISOYAMA K, SHIMIZU D. Visualization of ultraviolet irradiation using WO
3-cellulose derivatives composite film[J].
Optical Materials, 2020, 106: 109929.
doi:10.1016/j.optmat.2020.109929
|
[53] |
CHEN Y Q, DUAN X Y, MATUSCHEK M,
et al. Dynamic color displays using stepwise cavity resonators[J].
Nano Letters, 2017, 17(9): 5555-5560.
doi:10.1021/acs.nanolett.7b02336
|
[54] |
HANSON G W. Corrections to “dyadic green's functions for an anisotropic, non-local model of biased graphene” [Mar 08 747-757][J].
IEEE Transactions on Antennas And Propagation, 2012, 60(12): 6065.
doi:10.1109/TAP.2012.2214020
|
[55] |
HANSON G W. Erratum: “Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene” [J. Appl. Phys. 103, 064302 (2008)][J].
Journal of Applied Physics, 2013, 113(2): 029902.
doi:10.1063/1.4776680
|
[56] |
CHEN P Y, ALÙ A. Terahertz metamaterial devices based on graphene nanostructures[J].
IEEE Transactions on Terahertz Science And Technology, 2013, 3(6): 748-756.
doi:10.1109/TTHZ.2013.2285629
|
[57] |
DAWLATY J M, SHIVARAMAN S, STRAIT J,
et al. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible[J].
Applied Physics Letters, 2008, 93(13): 131905.
doi:10.1063/1.2990753
|
[58] |
CHENG H, CHEN SH Q, YU P,
et al. Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial[J].
Applied Physics Letters, 2013, 103(22): 223102.
doi:10.1063/1.4833757
|
[59] |
LIU Y, ZHONG R B, LIAN ZH,
et al. Dynamically tunable band stop filter enabled by the metal-graphene metamaterials[J].
Scientific Reports, 2018, 8: 2828.
doi:10.1038/s41598-018-21085-7
|
[60] |
汤炳书, 孙成祥. 多层石墨烯纳米膜的中红外窄带滤波特性调节[J]. 光学 精密工程,2019,27(12):2549-2554.
doi:10.3788/OPE.20192712.2549
TANG B SH, SUN CH X. Adjustment for mid-infrared narrow-bandfiltering charcteristic in multilayer graphene nanofilms[J].
Optics and Precision Engineering, 2019, 27(12): 2549-2554. (in Chinese)
doi:10.3788/OPE.20192712.2549
|
[61] |
余明芬, 曾洪梅, 张桦, 等. 微流控芯片技术研究概况及其应用进展[J]. 植物保护,2014,40(4):1-8.
doi:10.3969/j.issn.0529-1542.2014.04.001
YU M F, ZENG H M, ZHANG H,
et al. Research progress in microfluidics and its applications[J].
Plant Protection, 2014, 40(4): 1-8. (in Chinese)
doi:10.3969/j.issn.0529-1542.2014.04.001
|
[62] |
毛强, 唐雄贵, 孟方, 等. 基于亚波长光栅结构的微流控可调窄带滤波器设计与分析[J]. 与光电子学进展,2019,56(4):042301.
MAO Q, TANG X G, MENG F,
et al. Tunable narrow-band filter with sub-wavelength grating structure by micro-optofluidic technique[J].
Laser&
Optoelectronics Progress, 2019, 56(4): 042301. (in Chinese)
|
[63] |
SUN SH, YANG W H, ZHANG CH,
et al. Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces[J].
ACS Nano, 2018, 12(3): 2151-2159.
doi:10.1021/acsnano.7b07121
|
[64] |
WU P C, ZHU W M, SHEN ZH X,
et al. Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface[J].
Advanced Optical Materials, 2017, 5(7): 1600938.
doi:10.1002/adom.201600938
|
[65] |
KIM H K, LEE D, LIM S. A fluidically tunable metasurface absorber for flexible large-scale wireless ethanol sensor applications[J].
Sensors, 2016, 16(8): 1246.
doi:10.3390/s16081246
|
[66] |
MENG Q H, CHEN S H, LAI J J,
et al. Multi-physics simulation and fabrication of a compact 128× 128 micro-electro-mechanical system Fabry-Perot cavity tunable filter array for infrared hyperspectral imager[J].
Applied Optics, 2015, 54(22): 6850-6856.
doi:10.1364/AO.54.006850
|
[67] |
PEERLINGS J, DEHE A, VOGT A,
et al. Long resonator micromachined tunable GaAs-AlAs Fabry-Perot filter[J].
IEEE Photonics Technology Letters, 1997, 9(9): 1235-1237.
doi:10.1109/68.618489
|
[68] |
MANNILA R, NÄSILÄ A, VIHERKANTO K,
et al. Spectral imager based on Fabry-Perot interferometer for Aalto-1 nanosatellite[J].
Proceedings of SPIE, 2013, 8870: 887002.
doi:10.1117/12.2023299
|
[69] |
EBERMANN M, NEUMANN N, HILLER K,
et al. Tunable MEMS Fabry-Perot filters for infrared microspectrometers: a review[J].
Proceedings of SPIE, 2016, 9760: 97600H.
|
[70] |
MALINEN J, RISSANEN A, SAARI H,
et al. Advances in miniature spectrometer and sensor development[J].
Proceedings of SPIE, 2014, 9101: 91010C.
|
[71] |
LIN Y SH, DAI J, ZENG ZH Y,
et al. Metasurface color filters using Aluminum and Lithium Niobate configurations[J].
Nanoscale Research Letters, 2020, 15(1): 77.
doi:10.1186/s11671-020-03310-3
|
[72] |
HUNG E S, SENTURIA S D. Extending the travel range of analog-tuned electrostatic actuators[J].
Journal of Microelectromechanical Systems, 1999, 8(4): 497-505.
doi:10.1109/84.809065
|
[73] |
周南权, 陶纯匡, 崔胜利. 基于光栅光阀可调谐半导体 器外腔结构的设计研究[J]. 杂志,2008,29(3):8-9.
doi:10.3969/j.issn.0253-2743.2008.03.004
ZHOU N Q, TAO CH K, CUI SH L. The design of external cavity structure in tunable semiconductor laser based on grating light valve[J].
Laser Journal, 2008, 29(3): 8-9. (in Chinese)
doi:10.3969/j.issn.0253-2743.2008.03.004
|
[74] |
XU M J, HUANG Y SH, NI ZH J,
et al. Two-dimensional stretchable blazed wavelength-tunable grating based on PDMS[J].
Applied Optics, 2020, 59(30): 9614-9620.
doi:10.1364/AO.402461
|
[75] |
YU W, GAO SH Q, LIN Y SH,
et al. MEMS-based tunable grating coupler[J].
IEEE Photonics Technology Letters, 2019, 31(2): 161-164.
doi:10.1109/LPT.2018.2887254
|
[76] |
LUO F, YEH T F. Tuning fiber bragg gratings by deformable slides[J].
Journal of Lightwave Technology, 2018, 36(17): 3746-3751.
doi:10.1109/JLT.2018.2850354
|
[77] |
AXELROD R, SHACHAM-DIAMAND Y, GOLUB M A. Tunable resonance-domain diffraction gratings based on electrostrictive polymers[J].
Applied Optics, 2017, 56(7): 1817-1825.
doi:10.1364/AO.56.001817
|
[78] |
WANG F, JIA SH H, WANG Y L,
et al. Near-infrared light-controlled tunable grating based on graphene/elastomer composites[J].
Optical Materials, 2018, 76: 117-124.
doi:10.1016/j.optmat.2017.12.004
|
[79] |
燕斌, 苑伟政, 虞益挺, 等. 一种新型SOG周期可调光栅的制作及其衍射性能测试[J]. 光学学报,2010,30(11):3128-3132.
doi:10.3788/AOS20103011.3128
YAN B, YUAN W ZH, YU Y T,
et al. Fabrication and experimental investigation of diffraction characteristics for a pitch-tunable grating based on SOG process[J].
Acta Optica Sinica, 2010, 30(11): 3128-3132. (in Chinese)
doi:10.3788/AOS20103011.3128
|
[80] |
ERRANDO-HERRANZ C, LE THOMAS N, GYLFASON K B. Low-power optical beam steering by microelectromechanical waveguide gratings[J].
Optics Letters, 2019, 44(4): 855-858.
doi:10.1364/OL.44.000855
|
[81] |
李晓莹, 吴焱, 虞益挺, 等. 闪耀角可调微型可编程光栅的优化设计与仿真模拟[J]. 光子学报,2016,45(4):0405002.
doi:10.3788/gzxb20164504.0405002
LI X Y, WU Y, YU Y T,
et al. Optimization design and numerical simulation of micro programmable gratings with tunable blazed angle[J].
Acta Photonica Sinica, 2016, 45(4): 0405002. (in Chinese)
doi:10.3788/gzxb20164504.0405002
|
[82] |
CHEN L H, BUSFIELD J J C, CARPI F. Electrically tunable directional light scattering from soft thin membranes[J].
Optics Express, 2020, 28(14): 20669-20685.
doi:10.1364/OE.392015
|
[83] |
VALENTE J, OU J Y, PLUM E,
et al. A magneto-electro-optical effect in a plasmonic nanowire material[J].
Nature Communications, 2015, 6(1): 7021.
doi:10.1038/ncomms8021
|
[84] |
SHENG W J, PENG G D, YANG N,
et al. Suppression of sweeping fluctuation of Fabry-Perot filter in fiber Bragg grating interrogation using PSO-based self-adaptive sampling[J].
Mechanical Systems and Signal Processing, 2020, 142: 106724.
doi:10.1016/j.ymssp.2020.106724
|