Volume 14Issue 4
Jul. 2021
Turn off MathJax
Article Contents
LI Hao, HU De-jiao, QIN Fei, LI Xiang-ping. Principle and application of metasurface optical field modulation of atomic layer thickness[J]. Chinese Optics, 2021, 14(4): 851-866. doi: 10.37188/CO.2021-0069
Citation: LI Hao, HU De-jiao, QIN Fei, LI Xiang-ping. Principle and application of metasurface optical field modulation of atomic layer thickness[J].Chinese Optics, 2021, 14(4): 851-866.doi:10.37188/CO.2021-0069

Principle and application of metasurface optical field modulation of atomic layer thickness

doi:10.37188/CO.2021-0069
Funds:Supported by National Key Research and Development Program of China (No. 2018YFB1107200); National Natural Science Foundation of China (No. 61705084); Innovation and Entrepreneurship Project of Guangdong Province (No. 2016ZT06D081)
More Information
  • Corresponding author:xiangpingli@jnu.edu.cn
  • Received Date:29 Mar 2021
  • Rev Recd Date:16 Apr 2021
  • Available Online:17 Jun 2021
  • Publish Date:01 Jul 2021
  • Metasurfaces, composed of subwavelength-scale artificial nanostructures, can realize the versatile modulation of multiple attributes of light such as amplitude, phase and polarization, providing an excellent platform for nanophotonic devices. As a new type of layered material, 2D materials manifest peculiar optical and electrical properties compared to 3D bulk materials. The combination of 2D materials with metasurfaces offers new possibilities for the development of nanoscale planar optical devices. This paper reviews the development of metasurfaces based on 2D materials with atomic thicknesses, introduces the mechanism of light field modulation of various 2D material metasurfaces. An outlook on the challenges and potential applications for the development of atomic layer thickness metasurfaces are provided finally.

  • loading
  • [1]
    ENKRICH C, WEGENER M, LINDEN S, et al. Magnetic metamaterials at telecommunication and visible frequencies[J]. Physical Review Letters, 2005, 95(20): 203901. doi:10.1103/PhysRevLett.95.203901
    [2]
    VALENTINE J, ZHANG SH, ZENTGRAF T, et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature, 2008, 455(7211): 376-379. doi:10.1038/nature07247
    [3]
    WANG L Y, SMITH K W, DOMINGUEZ-MEDINA S, et al. Circular differential scattering of single chiral self-assembled gold nanorod dimers[J]. ACS Photonics, 2015, 2(11): 1602-1610. doi:10.1021/acsphotonics.5b00395
    [4]
    YU N F, GENEVET P, AIETA F, et al. Flat optics: controlling wavefronts with optical antenna metasurfaces[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(3): 4700423. doi:10.1109/JSTQE.2013.2241399
    [5]
    KUMAR K, DUAN H G, HEGDE R S, et al. Printing colour at the optical diffraction limit[J]. Nature Nanotechnology, 2012, 7(9): 557-561. doi:10.1038/nnano.2012.128
    [6]
    NI X J, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4(1): 2807. doi:10.1038/ncomms3807
    [7]
    CLAUSEN J S, HØJLUND-NIELSEN E, CHRISTIANSEN A B, et al. Plasmonic metasurfaces for coloration of plastic consumer products[J]. Nano Letters, 2014, 14(8): 4499-4504. doi:10.1021/nl5014986
    [8]
    YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi:10.1126/science.1210713
    [9]
    YU N F, AIETA F, GENEVET P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(12): 6328-6333. doi:10.1021/nl303445u
    [10]
    CHEN W T, YANG K Y, WANG C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Letters, 2014, 14(1): 225-230. doi:10.1021/nl403811d
    [11]
    GAO L H, CHENG Q, YANG J, et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light: Science& Applications, 2015, 4(9): e324.
    [12]
    MUELLER J P B, RUBIN N A, DEVLIN R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901. doi:10.1103/PhysRevLett.118.113901
    [13]
    WEN D D, YUE F Y, LI G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6: 8241. doi:10.1038/ncomms9241
    [14]
    DENG Z L, JIN M K, YE X, et al. Full‐color complex‐amplitude vectorial holograms based on multi‐freedom metasurfaces[J]. Advanced Functional Materials, 2020, 30(21): 1910610. doi:10.1002/adfm.201910610
    [15]
    LI X, CHEN L W, LI Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102. doi:10.1126/sciadv.1601102
    [16]
    SUN SH L, YANG K Y, WANG C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223-6229. doi:10.1021/nl3032668
    [17]
    ZHENG G X, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi:10.1038/nnano.2015.2
    [18]
    DENG J, YANG Y, TAO J, et al. Spatial frequency multiplexed meta-holography and meta-nanoprinting[J]. ACS Nano, 2019, 13(8): 9237-9246. doi:10.1021/acsnano.9b03738
    [19]
    AIETA F, GENEVET P, KATS M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932-4936. doi:10.1021/nl302516v
    [20]
    CHEN W T, ZHU A Y, SANJEEV V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3): 220-226. doi:10.1038/s41565-017-0034-6
    [21]
    WANG SH M, WU P C, SU V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187. doi:10.1038/s41467-017-00166-7
    [22]
    WANG SH M, WU P C, SU V C, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232. doi:10.1038/s41565-017-0052-4
    [23]
    TORRIJOS-MORÁN L, GRIOL A, GARCÍA-RUPÉREZ J. Slow light bimodal interferometry in one-dimensional photonic crystal waveguides[J]. Light: Science& Applications, 2021, 10(1): 16.
    [24]
    SUN W J, HE Q, SUN SH L, et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations[J]. Light: Science& Applications, 2016, 5(1): e16003.
    [25]
    XU T, ZHAO Y H, GAN D CH, et al. Directional excitation of surface plasmons with subwavelength slits[J]. Applied Physics Letters, 2008, 92(10): 101501. doi:10.1063/1.2894183
    [26]
    HUANG L L, CHEN X ZH, MÜHLENBERND H, et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 2012, 12(11): 5750-5755. doi:10.1021/nl303031j
    [27]
    PU M B, LI X, MA X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi:10.1126/sciadv.1500396
    [28]
    BIENER G, NIV A, KLEINER V, et al. Formation of helical beams by use of Pancharatnam–Berry phase optical elements[J]. Optics Letters, 2002, 27(21): 1875-1877. doi:10.1364/OL.27.001875
    [29]
    SUN SH L, HE Q, XIAO SH Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426-431. doi:10.1038/nmat3292
    [30]
    DECKER M, STAUDE I, FALKNER M, et al. High-efficiency dielectric huygens’ surfaces[J]. Advanced Optical Materials, 2015, 3(6): 813-820. doi:10.1002/adom.201400584
    [31]
    ARBABI A, HORIE Y, BAGHERI M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937-943. doi:10.1038/nnano.2015.186
    [32]
    LIN J, GENEVET P, KATS M A, et al. Nanostructured holograms for broadband manipulation of vector beams[J]. Nano Letters, 2013, 13(9): 4269-4274. doi:10.1021/nl402039y
    [33]
    DENG Z L, DENG J H, ZHUANG X, et al. Diatomic metasurface for vectorial holography[J]. Nano Letters, 2018, 18(5): 2885-2892. doi:10.1021/acs.nanolett.8b00047
    [34]
    KHORASANINEJAD M, AMBROSIO A, KANHAIYA P, et al. Broadband and chiral binary dielectric meta-holograms[J]. Science Advances, 2016, 2(5): e1501258. doi:10.1126/sciadv.1501258
    [35]
    BHASU V C J, SATHYANARAYANA D N, PATEL C C, et al. Proceedings of the Indian academy of sciences—section A—volume 88–1979[J]. Proceedings of the Indian Academy of Sciences-Chemical Sciences, 1979, 88(4): 333.
    [36]
    BERRY M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1984, 392(1802): 45-57.
    [37]
    LIN D M, FAN P Y, HASMAN E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302. doi:10.1126/science.1253213
    [38]
    HUANG L J, CHEN X ZH, MÜHLENBERND H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4(1): 2808. doi:10.1038/ncomms3808
    [39]
    TAN S J, ZHANG L, ZHU D, et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures[J]. Nano Letters, 2014, 14(7): 4023-4029. doi:10.1021/nl501460x
    [40]
    LUO X G, PU M B, MA X L, et al. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices[J]. International Journal of Antennas and Propagation, 2015, 2015: 204127.
    [41]
    LUO X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics& Astronomy, 2015, 58(9): 594201.
    [42]
    WEST P R, STEWART J L, KILDISHEV A V, et al. All-dielectric subwavelength metasurface focusing lens[J]. Optics Express, 2014, 22(21): 26212-26221. doi:10.1364/OE.22.026212
    [43]
    LALANNE P, ASTILEAN S, CHAVEL P, et al. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings[J]. Optics Letters, 1998, 23(14): 1081-1083. doi:10.1364/OL.23.001081
    [44]
    KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194. doi:10.1126/science.aaf6644
    [45]
    BROWN B R, LOHMANN A W. Complex spatial filtering with binary masks[J]. Applied Optics, 1966, 5(6): 967-969. doi:10.1364/AO.5.000967
    [46]
    GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191. doi:10.1038/nmat1849
    [47]
    WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712. doi:10.1038/nnano.2012.193
    [48]
    MAK K F, LEE C, HONE J, et al. Atomically thin MoS 2: a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805. doi:10.1103/PhysRevLett.105.136805
    [49]
    PAKDEL A, BANDO Y, GOLBERG D. Nano boron nitride flatland[J]. Chemical Society Reviews, 2014, 43(3): 934-959. doi:10.1039/C3CS60260E
    [50]
    DEAN C R, YOUNG A F, MERIC I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(10): 722-726. doi:10.1038/nnano.2010.172
    [51]
    HULTGREN R, GINGRICH N S, WARREN B E. The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus[J]. The Journal of Chemical Physics, 1935, 3(6): 351-355. doi:10.1063/1.1749671
    [52]
    SPLENDIANI A, SUN L, ZHANG Y B, et al. Emerging photoluminescence in monolayer MoS 2[J]. Nano Letters, 2010, 10(4): 1271-1275. doi:10.1021/nl903868w
    [53]
    MAK K F, HE K L, SHAN J, et al. Control of valley polarization in monolayer MoS 2by optical helicity[J]. Nature Nanotechnology, 2012, 7(8): 494-498. doi:10.1038/nnano.2012.96
    [54]
    YE Z L, CAO T, O’BRIEN K, et al. Probing excitonic dark states in single-layer tungsten disulphide[J]. Nature, 2014, 513(7517): 214-218. doi:10.1038/nature13734
    [55]
    WU Y Q, JENKINS K A, VALDES-GARCIA A, et al. State-of-the-art graphene high-frequency electronics[J]. Nano Letters, 2012, 12(6): 3062-3067. doi:10.1021/nl300904k
    [56]
    BALANDIN A A, GHOSH S, BAO W ZH, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907. doi:10.1021/nl0731872
    [57]
    WILSON J A, YOFFE A D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties[J]. Advances in Physics, 1969, 18(73): 193-335. doi:10.1080/00018736900101307
    [58]
    VERRE R, BARANOV D G, MUNKHBAT B, et al. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators[J]. Nature Nanotechnology, 2019, 14(7): 679-683. doi:10.1038/s41565-019-0442-x
    [59]
    LIU CH H, ZHENG J J, COLBURN S, et al. Ultrathin van der Waals metalenses[J]. Nano Letters, 2018, 18(11): 6961-6966. doi:10.1021/acs.nanolett.8b02875
    [60]
    MORENO I, CAMPOS J, GORECKI C, et al. Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition[J]. Japanese Journal of Applied Physics, 1995, 34(12R): 6423.
    [61]
    LI X P, REN H R, CHEN X, et al. A thermally photoreduced graphene oxides for three-dimensional holographic images[J]. Nature Communications, 2015, 6(1): 6984. doi:10.1038/ncomms7984
    [62]
    LI P N, DOLADO I, ALFARO-MOZAZ F J, et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials[J]. Science, 2018, 359(6378): 892-896. doi:10.1126/science.aaq1704
    [63]
    BAO Q L, ZHANG H, WANG B, et al. Broadband graphene polarizer[J]. Nature Photonics, 2011, 5(7): 411-415. doi:10.1038/nphoton.2011.102
    [64]
    KIM S, JANG M S, BRAR V W, et al. Electronically tunable perfect absorption in graphene[J]. Nano Letters, 2018, 18(2): 971-979. doi:10.1021/acs.nanolett.7b04393
    [65]
    WANG Y W, DENG Z L, HU D J, et al. Atomically thin noble metal dichalcogenides for phase-regulated meta-optics[J]. Nano Letters, 2020, 20(11): 7811-7818. doi:10.1021/acs.nanolett.0c01805
    [66]
    QIN F, LIU B Q, ZHU L W, et al. π-phase modulated monolayer supercritical lens[J]. Nature Communications, 2021, 12(1): 32. doi:10.1038/s41467-020-20278-x
    [67]
    LIN H, XU Z Q, CAO G Y, et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses[J]. Light: Science& Applications, 2020, 9(1): 137.
    [68]
    HU D J, LI H, ZHU Y P, et al. Ultra-sensitive nanometric flat laser prints for binocular stereoscopic image[J]. Nature Communications, 2021, 12(1): 1154. doi:10.1038/s41467-021-21499-4
    [69]
    VAN DE GROEP J, SONG J H, CELANO U, et al. Exciton resonance tuning of an atomically thin lens[J]. Nature Photonics, 2020, 14(7): 426-430. doi:10.1038/s41566-020-0624-y
    [70]
    QU CH, MA SH J, HAO J M, et al. Tailor the functionalities of metasurfaces based on a complete phase diagram[J]. Physical Review Letters, 2015, 115(23): 235503. doi:10.1103/PhysRevLett.115.235503
    [71]
    LOPEZ-SANCHEZ O, LEMBKE D, KAYCI M, et al. Ultrasensitive photodetectors based on monolayer MoS 2[J]. Nature Nanotechnology, 2013, 8(7): 497-501. doi:10.1038/nnano.2013.100
    [72]
    ANDRZEJEWSKI D, HOPMANN E, JOHN M, et al. WS 2monolayer-based light-emitting devices in a vertical p–n architecture[J]. Nanoscale, 2019, 11(17): 8372-8379. doi:10.1039/C9NR01573F
    [73]
    DOBUSCH L, SCHULER S, PEREBEINOS V, et al. Thermal light emission from monolayer MoS 2[J]. Advanced Materials, 2017, 29(31): 1701304. doi:10.1002/adma.201701304
    [74]
    YANG J, WANG ZH, WANG F, et al. Atomically thin optical lenses and gratings[J]. Light: Science& Applications, 2016, 5(3): e16046.
    [75]
    KATS M A, BLANCHARD R, GENEVET P, et al. Nanometre optical coatings based on strong interference effects in highly absorbing media[J]. Nature Materials, 2013, 12(1): 20-24. doi:10.1038/nmat3443
    [76]
    WANG Z, YUAN G H, YANG M, et al. Exciton-enabled meta-optics in two-dimensional transition metal dichalcogenides[J]. Nano Letters, 2020, 20(11): 7964-7972. doi:10.1021/acs.nanolett.0c02712
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views(2035) PDF downloads(311) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map