Citation: | FANG Xiao-min, JIANG Xiao-wei, WU Hua. Dual-wavelength narrow-bandwidth dielectric metamaterial absorber[J].Chinese Optics, 2021, 14(6): 1327-1340.doi:10.37188/CO.2021-0075 |
[1] |
ZHANG J F, YUAN X D, QIN SH Q. Tunable terahertz and optical metamaterials[J].
Chinese Optics, 2014, 7(3): 349-364. (in Chinese)
|
[2] |
DU K K, LI Q, LV Y B,
et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST[J].
Light,
Science&
Applications, 2017, 6(1): e16194.
|
[3] |
HE X Y, LIU F, LIN F T,
et al. Tunable 3D Dirac-semimetals supported mid-IR hybrid plasmonic waveguides[J].
Optics Letters, 2021, 46(3): 472-475.
doi:10.1364/OL.415187
|
[4] |
HE X Y, LIU F, LIN F T,
et al. Tunable terahertz Dirac semimetal metamaterials[J].
Journal of Physics D:
Applied Physics, 2021, 54(3): 235103.
|
[5] |
MOU N L, LIU X L, WEI T,
et al. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material[J].
Nanoscale, 2020, 12(9): 5374-5379.
doi:10.1039/C9NR07602F
|
[6] |
LANDY N I, SAJUYIGBE S, MOCK J J,
et al. Perfect metamaterial absorber[J].
Physical Review Letters, 2008, 100(20): 207402.
doi:10.1103/PhysRevLett.100.207402
|
[7] |
TUAN T S, HOA N T Q. Numerical study of an efficient broadband metamaterial absorber in visible light region[J].
IEEE Photonics Journal, 2019, 11(3): 4600810.
|
[8] |
PENG J, HE X Y, SHI CH Y Y,
et al. Investigation of graphene supported terahertz elliptical metamaterials[J].
Physica E:
Low-Dimensional Systems and Nanostructures, 2020, 124: 114309.
doi:10.1016/j.physe.2020.114309
|
[9] |
YAO G, LING F R, YUE J,
et al. Dual-band tunable perfect metamaterial absorber in the THz range[J].
Optics Express, 2016, 24(2): 1518-1527.
doi:10.1364/OE.24.001518
|
[10] |
LIU N, MESCH M, WEISS T,
et al. Infrared perfect absorber and its application as plasmonic sensor[J].
Nano Letters, 2010, 10(7): 2342-2348.
doi:10.1021/nl9041033
|
[11] |
GREFFET J J, CARMINATI R, JOULAIN K,
et al. Coherent emission of light by thermal sources[J].
Nature, 2002, 416(6876): 61-64.
doi:10.1038/416061a
|
[12] |
ZHU ZH H, EVANS P G, HAGLUND R F JR,
et al. Dynamically reconfigurable metadevice employing nanostructured phase-change materials[J].
Nano Letters, 2017, 17(8): 4881-4885.
doi:10.1021/acs.nanolett.7b01767
|
[13] |
ANKER J N, HALL W P, LYANDRES O,
et al. Biosensing with plasmonic nanosensors[J].
Nature Materials, 2008, 7(6): 442-453.
doi:10.1038/nmat2162
|
[14] |
MENG L J, ZHAO D, RUAN ZH C,
et al. Optimized grating as an ultra-narrow band absorber or plasmonic sensor[J].
Optics Letters, 2014, 39(5): 1137-1140.
doi:10.1364/OL.39.001137
|
[15] |
FENG A S, YU Z J, SUN X K. Ultranarrow-band metagrating absorbers for sensing and modulation[J].
Optics Express, 2018, 26(22): 28197-28205.
doi:10.1364/OE.26.028197
|
[16] |
KANG S, QIAN ZH Y, RAJARAM V,
et al. Ultra-narrowband metamaterial absorbers for high spectral resolution infrared spectroscopy[J].
Advanced Optical Materials, 2019, 7(2): 1801236.
doi:10.1002/adom.201801236
|
[17] |
RRN ZH B, SUN Y H, LIN Z H,
et al. Ultra-narrow band perfect metamaterial absorber based on dielectric-metal periodic configuration[J].
Optical Materials, 2019, 89: 308-315.
doi:10.1016/j.optmat.2019.01.020
|
[18] |
LIAO Y L, ZHAO Y. Ultra-narrowband dielectric metamaterial absorber with ultra-sparse nanowire grids for sensing applications[J].
Scientific Reports, 2020, 10(1): 1480.
doi:10.1038/s41598-020-58456-y
|
[19] |
XU Z CH, GAO R M, DING CH F,
et al. Multiband metamaterial absorber at terahertz frequencies[J].
Chinese Physics Letters, 2014, 31(5): 054205.
doi:10.1088/0256-307X/31/5/054205
|
[20] |
HU F R, WANG L, QUAN B G,
et al. Design of a polarization insensitive multiband terahertz metamaterial absorber[J].
Journal of Physics D:
Applied Physics, 2013, 46(19): 195103.
doi:10.1088/0022-3727/46/19/195103
|
[21] |
DING F, DAI J, CHEN Y T,
et al. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals[J].
Scientific Reports, 2016, 6(1): 39445.
doi:10.1038/srep39445
|
[22] |
JOHNSON P B, CHRISTY R W. Optical constants of the noble metals[J].
Physical Review B, 1972, 6(12): 4370-4379.
doi:10.1103/PhysRevB.6.4370
|
[23] |
LI W CH, ZHOU X, YING Y,
et al. Polarization-insensitive wide-angle multiband metamaterial absorber with a double-layer modified electric ring resonator array[J].
AIP Advances, 2015, 5(6): 067151.
doi:10.1063/1.4923194
|
[24] |
WANG Q. Study on the mechanism and characteristics of guided-mode resonance subwavelength device[D]. Shanghai: University of Shanghai for Science and Technology, 2012: 44-46. (in Chinese)
|
[25] |
ZENG ZH W, LIU H T, ZHANG S W. Design of extraordinary-optical-transimission refractive-index sensor of subwavelength metallic slit array based on a Fabry-Perot model[J].
Acta Physica Sinica, 2012, 61(20): 200701. (in Chinese)
doi:10.7498/aps.61.200701
|
[26] |
LIU W X. Design and characterization of controllable linewidth guided-mode resonance filter[D]. Nanchang: Nanchang University, 2011: 18-22. (in Chinese)
|
[27] |
JIANG X W, WU H. Metamaterial absorber with controllable absorption wavelength and absorption efficiency[J].
Acta Physica Sinica, 2021, 70(2): 027804. (in Chinese)
doi:10.7498/aps.70.20201173
|