Volume 15 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
SUN Yi-yang, XU Jin-kai, YU Zhan-jiang, ZHANG Xiang-hui, CHENG Ya-ya, YU Hua-dong. Coaxial holographic reconstruction method of micro-milling tool pose[J]. Chinese Optics, 2022, 15(2): 355-363. doi: 10.37188/CO.2021-0089
Citation: SUN Yi-yang, XU Jin-kai, YU Zhan-jiang, ZHANG Xiang-hui, CHENG Ya-ya, YU Hua-dong. Coaxial holographic reconstruction method of micro-milling tool pose[J]. Chinese Optics, 2022, 15(2): 355-363. doi: 10.37188/CO.2021-0089

Coaxial holographic reconstruction method of micro-milling tool pose

Funds:  Supported by the Jilin Key Research and Development Project (No. 20210201112GX); The National Key Research and Development Plan Project (No. 2018YFB1107403); The “111” Project of China (No. D17017); Jilin Province Scientific and Technological Development Program (No. 20190101005JH, No. 20180201057GX)
More Information
  • Corresponding author: xujinkai@cust.edu.cn
  • Received Date: 22 Apr 2021
  • Rev Recd Date: 12 May 2021
  • Available Online: 16 Aug 2021
  • Publish Date: 21 Mar 2022
  • When a micro-milling tool has a clamping angle on its spindle, the wear of the tool edge will accelerate and shorten the tool’s lifespan. In order to accurately observe the inclination state of the micro-milling tool on the machine, a three-dimensional pose reconstruction method based on the depth of field of a micro-milling tool is proposed. The laser coaxial digital holographic experimental device is used to obtain the micro-milling tool hologram, and the reconstruction image is obtained through the Fresnel reconstruction algorithm. The tool edge points are extracted as the key points in the reconstruction image, the wavelet transform local variance operator is used to obtain the degree of focus of the key points, and then the axial position corresponding to the milling tool is determined. The least square method is used to fit the key points and correct the reconstruction error, from which the three-dimensional pose reconstruction of the micro-milling tool is realized. The experimental results show that the reconstruction error of the micro-milling tool obtained by the three-dimensional pose reconstruction method is better than 0.1°. This method can accurately measure a three-dimensional pose of a micro-milling tool, which can provide a reference for the subsequent correction of micro-milling tool clamping accuracy.

     

  • loading
  • [1]
    SHI G F, ZHANG Y SH, ZHANG H, et al. Analysis of the influence of installation tilt error on the tool setting accuracy by laser diffraction[J]. Applied Optics, 2018, 57(12): 3012-3020. doi: 10.1364/AO.57.003012
    [2]
    ZHENG K B, HE N, LI L, et al. Method of precise tool setting for micro turning[J]. Materials Science Forum, 2012, 723: 383-388. doi: 10.4028/www.scientific.net/MSF.723.383
    [3]
    XU M, NAKAMOTO K, TAKEUCHI Y. Compensation method for tool setting errors based on non-contact on-machine measurement[J]. International Journal of Automation Technology, 2020, 14(1): 66-72. doi: 10.20965/ijat.2020.p0066
    [4]
    曾超, 高洪跃, 刘吉成, 等. 动态全息三维显示研究最新进展[J]. 物理学报,2015,64(12):124215. doi: 10.7498/aps.64.124215

    ZENG CH, GAO H Y, LIU J CH, et al. Latest developments of dynamic holographic three-dimensional display[J]. Acta Physica Sinica, 2015, 64(12): 124215. (in Chinese) doi: 10.7498/aps.64.124215
    [5]
    陈竹, 姜宏振, 刘旭, 等. 数字全息术用于光学元件表面缺陷形貌测量[J]. 光学 精密工程,2017,25(3):576-583. doi: 10.3788/OPE.20172503.0576

    CHEN ZH, JIANG H ZH, LIU X, et al. Measurement of surface defects of optical elements using digital holography[J]. Optics and Precision Engineering, 2017, 25(3): 576-583. (in Chinese) doi: 10.3788/OPE.20172503.0576
    [6]
    KOZACKI T, CHLIPALA M, MAKOWSKI P L. Color Fourier orthoscopic holography with laser capture and an LED display[J]. Optics Express, 2018, 26(9): 12144-12158. doi: 10.1364/OE.26.012144
    [7]
    朱越, 刘文耀, 刘方超, 等. 用数字全息术检测轮胎气泡缺陷[J]. 光学 精密工程,2009,17(5):1099-1104.

    ZHU Y, LIU W Y, LIU F CH, et al. Inspection of air bubble defect in tires by digital holography[J]. Optics and Precision Engineering, 2009, 17(5): 1099-1104. (in Chinese)
    [8]
    王雪, 刘虹遥, 路鑫超, 等. 无透镜全息显微细胞成像[J]. 光学 精密工程,2020,28(8):1644-1650.

    WANG X, LIU H Y, LU X CH, et al. Cell imaging by holographic lens-free microscopy[J]. Optics and Precision Engineering, 2020, 28(8): 1644-1650. (in Chinese)
    [9]
    郭力菡, 王新柯, 张岩. 生物组织的太赫兹数字全息成像[J]. 光学 精密工程,2017,25(3):611-615. doi: 10.3788/OPE.20172503.0611

    GUO L H, WANG X K, ZHANG Y. Terahertz digital holographic imaging of biological tissues[J]. Optics and Precision Engineering, 2017, 25(3): 611-615. (in Chinese) doi: 10.3788/OPE.20172503.0611
    [10]
    DI CAPRIO G, FERRARA M A, MICCIO L, et al. Holographic imaging of unlabelled sperm cells for semen analysis: a review[J]. Journal of Biophotonics, 2015, 8(10): 779-789. doi: 10.1002/jbio.201400093
    [11]
    杨德兴, 许增奇, 姜宏振, 等. 利用数字全息干涉术测量电路板的连续弯曲形变[J]. 光学 精密工程,2012,20(8):1789-1795. doi: 10.3788/OPE.20122008.1789

    YANG D X, XU Z Q, JIANG H ZH, et al. Measurement of continuous bending deformation for circuit boards by digital holographic interferometry[J]. Optics and Precision Engineering, 2012, 20(8): 1789-1795. (in Chinese) doi: 10.3788/OPE.20122008.1789
    [12]
    LI X Y, TANG CH, ZHU X J, et al. Image/video encryption using single shot digital holography[J]. Optics Communications, 2015, 342: 218-223. doi: 10.1016/j.optcom.2014.12.082
    [13]
    SU Y G, XU W J, LI T L, et al. Optical color image encryption based on fingerprint key and phase-shifting digital holography[J]. Optics and Lasers in Engineering, 2021, 140: 106550. doi: 10.1016/j.optlaseng.2021.106550
    [14]
    马利红, 王辉, 李勇, 等. 全息模拟再现像的三维重构[J]. 光子学报,2006,35(4):595-598.

    MA L H, WANG H, LI Y, et al. 3-D rebuilding based on numerical reconstruction of the hologram[J]. Acta Photonica Sinica, 2006, 35(4): 595-598. (in Chinese)
    [15]
    阳静, 吴学成, 吴迎春, 等. 数字显微全息重建图像的景深扩展研究[J]. 物理学报,2015,64(11):114209. doi: 10.7498/aps.64.114209

    YANG J, WU X CH, WU Y CH, et al. Study on extending the depth of field in reconstructed image for a micro digital hologram[J]. Acta Physica Sinica, 2015, 64(11): 114209. (in Chinese) doi: 10.7498/aps.64.114209
    [16]
    程亚亚, 于化东, 于占江, 等. 微铣刀同轴全息图像增强方法[J]. 中国光学,2020,13(4):705-712. doi: 10.37188/CO.2019-0217

    CHENG Y Y, YU H D, YU ZH J, et al. Method of enhancing the quality of in-line holographic images for micro-milling tool[J]. Chinese Optics, 2020, 13(4): 705-712. (in Chinese) doi: 10.37188/CO.2019-0217
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article views(1142) PDF downloads(105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map