Citation: | LIN Ruo-yu, WU Yi-fan, FU Bo-yan, WANG Shu-ming, WANG Zhen-lin, ZHU Shi-ning. Application of chromatic aberration control of metalens[J].Chinese Optics, 2021, 14(4): 764-781.doi:10.37188/CO.2021-0096 |
[1] |
JAHANI S, JACOB Z. All-dielectric metamaterials[J].
Nature Nanotechnology, 2016, 11(1): 23-36.
doi:10.1038/nnano.2015.304
|
[2] |
CHEBEN P, HALIR R, SCHMID J H,
et al. Subwavelength integrated photonics[J].
Nature, 2018, 560(7720): 565-572.
doi:10.1038/s41586-018-0421-7
|
[3] |
KUZNETSOV A I, MIROSHNICHENKO A E, BRONGERSMA M L,
et al. Optically resonant dielectric nanostructures[J].
Science, 2016, 354(6314): aag2472.
doi:10.1126/science.aag2472
|
[4] |
NICHOLLS L H, RODRÍGUEZ-FORTUÑO F J, NASIR M E,
et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials[J].
Nature Photonics, 2017, 11(10): 628-633.
doi:10.1038/s41566-017-0002-6
|
[5] |
JAHANI S, KIM S, ATKINSON J,
et al. Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration[J].
Nature Communications, 2018, 9(1): 1893.
doi:10.1038/s41467-018-04276-8
|
[6] |
STAUDE I, SCHILLING J. Metamaterial-inspired silicon nanophotonics[J].
Nature Photonics, 2017, 11(5): 274-284.
doi:10.1038/nphoton.2017.39
|
[7] |
SURJADI J U, GAO L B, DU H F,
et al. Mechanical metamaterials and their engineering applications[J].
Advanced Engineering Materials, 2019, 21(3): 1800864.
doi:10.1002/adem.201800864
|
[8] |
HUANG L L, CHEN X ZH, MÜHLENBERND H,
et al. Dispersionless phase discontinuities for controlling light propagation[J].
Nano Letters, 2012, 12(11): 5750-5755.
doi:10.1021/nl303031j
|
[9] |
NI X J, WONG Z J, MREJEN M,
et al. An ultrathin invisibility skin cloak for visible light[J].
Science, 2015, 349(6254): 1310-1314.
doi:10.1126/science.aac9411
|
[10] |
SHENG C, LIU H, WANG Y,
et al. Trapping light by mimicking gravitational lensing[J].
Nature Photonics, 2013, 7(11): 902-906.
doi:10.1038/nphoton.2013.247
|
[11] |
HUANG Y W, LEE H W, SOKHOYAN R,
et al. Gate-tunable conducting oxide metasurfaces[J].
Nano Letters, 2016, 16(9): 5319-5325.
doi:10.1021/acs.nanolett.6b00555
|
[12] |
KHORASANINEJAD M, CHEN W T, ZHU A Y,
et al. Multispectral chiral imaging with a metalens[J].
Nano Letters, 2016, 16(7): 4595-4600.
doi:10.1021/acs.nanolett.6b01897
|
[13] |
WANG L, KRUK S, TANG H ZH,
et al. Grayscale transparent metasurface holograms[J].
Optica, 2016, 3(12): 1504-1505.
doi:10.1364/OPTICA.3.001504
|
[14] |
DHARMAVARAPU R, IZUMI K I, KATAYAMA I,
et al. Dielectric cross-shaped-resonator-based metasurface for vortex beam generation at mid-IR and THz wavelengths[J].
Nanophotonics, 2019, 8(7): 1263-1270.
doi:10.1515/nanoph-2019-0112
|
[15] |
MIA M B, AHMED S Z, AHMED I,
et al. Exceptional coupling in photonic anisotropic metamaterials for extremely low waveguide crosstalk[J].
Optica, 2020, 7(8): 881-887.
doi:10.1364/OPTICA.394987
|
[16] |
SHERROTT M C, HON P W C, FOUNTAINE K T,
et al. Experimental demonstration of > 230°phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces[J].
Nano Letters, 2017, 17(5): 3027-3034.
doi:10.1021/acs.nanolett.7b00359
|
[17] |
RHO J, YE Z L, XIONG Y,
et al. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies[J].
Nature Communications, 2010, 1: 143.
doi:10.1038/ncomms1148
|
[18] |
SEGOVIA P, MARINO G, KRASAVIN A V,
et al. Hyperbolic metamaterial antenna for second-harmonic generation tomography[J].
Optics Express, 2015, 23(24): 30730-30738.
doi:10.1364/OE.23.030730
|
[19] |
SHEKHAR P, PENDHARKER S, SAHASRABUDHE H,
et al. Extreme ultraviolet plasmonics and Cherenkov radiation in silicon[J].
Optica, 2018, 5(12): 1590-1596.
doi:10.1364/OPTICA.5.001590
|
[20] |
SHALTOUT A M, SHALAEV V M, BRONGERSMA M L. Spatiotemporal light control with active metasurfaces[J].
Science, 2019, 364(6441): eaat3100.
doi:10.1126/science.aat3100
|
[21] |
ZHANG L, CHEN X Q, LIU SH,
et al. Space-time-coding digital metasurfaces[J].
Nature Communications, 2018, 9(1): 4334.
doi:10.1038/s41467-018-06802-0
|
[22] |
CHEN SH Q, LI ZH CH, LIU W W,
et al. From single-dimensional to multidimensional manipulation of optical waves with metasurfaces[J].
Advanced Materials, 2019, 31(16): 1802458.
doi:10.1002/adma.201802458
|
[23] |
LI Y, LI X, CHEN L W,
et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface[J].
Advanced Optical Materials, 2017, 5(2): 1600502.
doi:10.1002/adom.201600502
|
[24] |
REMNEV M A, KLIMOV V V. Metasurfaces: a new look at Maxwell's equations and new ways to control light[J].
Physics-Uspekhi, 2018, 61(2): 157-190.
doi:10.3367/UFNe.2017.08.038192
|
[25] |
TSENG M L, HSIAO H H, CHU C H,
et al. Metalenses: advances and applications[J].
Advanced Optical Materials, 2018, 6(18): 1800554.
doi:10.1002/adom.201800554
|
[26] |
GENEVET P, CAPASSO F, AIETA F,
et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J].
Optica, 2017, 4(1): 139-152.
doi:10.1364/OPTICA.4.000139
|
[27] |
LI L, LIU Z X, REN X F,
et al. Metalens-array-based high-dimensional and multiphoton quantum source[J].
Science, 2020, 368(6498): 1487-1490.
doi:10.1126/science.aba9779
|
[28] |
YU N F, GENEVET P, KATS M A,
et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J].
Science, 2011, 334(6054): 333-337.
doi:10.1126/science.1210713
|
[29] |
HUANG T Y, GROTE R R, MANN S A,
et al. A monolithic immersion metalens for imaging solid-state quantum emitters[J].
Nature Communications, 2019, 10(1): 2392.
doi:10.1038/s41467-019-10238-5
|
[30] |
YUE F Y, WEN D D, XIN J T,
et al. Vector vortex beam generation with a single plasmonic metasurface[J].
ACS Photonics, 2016, 3(9): 1558-1563.
doi:10.1021/acsphotonics.6b00392
|
[31] |
ZHU W M, SONG Q H, YAN L B,
et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial[J].
Advanced Materials, 2015, 27(32): 4739-4743.
doi:10.1002/adma.201501943
|
[32] |
KHORASANINEJAD M, CHEN W T, DEVLIN R C,
et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J].
Science, 2016, 352(6290): 1190-1194.
doi:10.1126/science.aaf6644
|
[33] |
PU M B, LI X, MA X L,
et al. Catenary optics for achromatic generation of perfect optical angular momentum[J].
Science Advances, 2015, 1(9): e1500396.
doi:10.1126/sciadv.1500396
|
[34] |
HSIAO H H, CHEN Y H, LIN R J,
et al. Integrated-resonant units: integrated resonant unit of metasurfaces for broadband efficiency and phase manipulation (advanced optical materials 12/2018)[J].
Advanced Optical Materials, 2018, 6(12): 1870047.
doi:10.1002/adom.201870047
|
[35] |
GOLDYS E M, GODLEWSKI M, LANGER R,
et al. Analysis of the red optical emission in cubic GaN grown by molecular-beam epitaxy[J].
Physical Review B, 1999, 60(8): 5464-5469.
doi:10.1103/PhysRevB.60.5464
|
[36] |
HSIAO H H, CHU C H, TSAI D P. Fundamentals and applications of metasurfaces[J].
Small Methods, 2017, 1(4): 1600064.
doi:10.1002/smtd.201600064
|
[37] |
YU N F, CAPASSO F. Flat optics with designer metasurfaces[J].
Nature Materials, 2014, 13(2): 139-150.
doi:10.1038/nmat3839
|
[38] |
WU P C, TSAI W Y, CHEN W T,
et al. Versatile polarization generation with an aluminum plasmonic metasurface[J].
Nano Letters, 2017, 17(1): 445-452.
doi:10.1021/acs.nanolett.6b04446
|
[39] |
LI L, LI T, TANG X M,
et al. Plasmonic polarization generator in well-routed beaming[J].
Light:
Science&
Applications, 2015, 4(9): e330.
|
[40] |
WU P C, ZHU W M, SHEN ZH X,
et al. Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface[J].
Advanced Optical Materials, 2017, 5(7): 1600938.
doi:10.1002/adom.201600938
|
[41] |
HUANG L L, MÜHLENBERND H, LI X W,
et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J].
Advanced Materials, 2015, 27(41): 6444-6449.
doi:10.1002/adma.201502541
|
[42] |
WU P C, PAPASIMAKIS N, TSAI D P. Self-affine graphene metasurfaces for tunable broadband absorption[J].
Physical Review Applied, 2016, 6(4): 044019.
doi:10.1103/PhysRevApplied.6.044019
|
[43] |
THYAGARAJAN K, SOKHOYAN R, ZORNBERG L,
et al. Millivolt modulation of plasmonic metasurface optical response via ionic conductance[J].
Advanced Materials, 2017, 29(31): 1701044.
doi:10.1002/adma.201701044
|
[44] |
KHORASANINEJAD M, AIETA F, KANHAIYA P,
et al. Achromatic metasurface lens at telecommunication wavelengths[J].
Nano Letters, 2015, 15(8): 5358-5362.
doi:10.1021/acs.nanolett.5b01727
|
[45] |
STRIKWERDA A C, SLEASMAN T, ANDERSON W,
et al. Sub-wavelength focusing in inhomogeneous media with a metasurface near field plate[J].
Sensors(
Basel)
|
[46] |
KHORASANINEJAD M, CAPASSO F. Metalenses: versatile multifunctional photonic components[J].
Science, 2017, 358(6367): eaam8100.
doi:10.1126/science.aam8100
|
[47] |
EPSTEIN A, ELEFTHERIADES G V. Huygens’ metasurfaces via the equivalence principle: design and applications[J].
Journal of the Optical Society of America B, 2016, 33(2): A31-A50.
doi:10.1364/JOSAB.33.000A31
|
[48] |
CHEN H Y, WANG J F, MA H,
et al. Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances[J].
Journal of Applied Physics, 2014, 115(15): 154504.
doi:10.1063/1.4869917
|
[49] |
DING X M, MONTICONE F, ZHANG K,
et al. Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency[J].
Advanced Materials, 2015, 27(7): 1195-1200.
doi:10.1002/adma.201405047
|
[50] |
CHEN W T, YANG K Y, WANG C M,
et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J].
Nano Letters, 2014, 14(1): 225-230.
doi:10.1021/nl403811d
|
[51] |
DING F, CHANG B D, WEI Q SH,
et al. Versatile polarization generation and manipulation using dielectric metasurfaces[J].
Laser&
Photonics Reviews, 2020, 14(11): 2000116.
|
[52] |
RUBIN N A, D'AVERSA G, CHEVALIER P,
et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J].
Science, 2019, 365(6448): eaax1839.
doi:10.1126/science.aax1839
|
[53] |
ARBABI E, KAMALI S M, ARBABI A,
et al. Full-stokes imaging polarimetry using dielectric metasurfaces[J].
ACS Photonics, 2018, 5(8): 3132-3140.
doi:10.1021/acsphotonics.8b00362
|
[54] |
MUELLER J P B, RUBIN N A, DEVLIN R C,
et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J].
Physical Review Letters, 2017, 118(11): 113901.
doi:10.1103/PhysRevLett.118.113901
|
[55] |
HUANG Y W, CHEN W T, TSAI W Y,
et al. Aluminum plasmonic multicolor meta-hologram[J].
Nano Letters, 2015, 15(5): 3122-3127.
doi:10.1021/acs.nanolett.5b00184
|
[56] |
WEN D D, YUE F Y, LI G X,
et al. Helicity multiplexed broadband metasurface holograms[J].
Nature Communications, 2015, 6: 8241.
doi:10.1038/ncomms9241
|
[57] |
LI X, CHEN L W, LI Y,
et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J].
Science Advances, 2016, 2(11): e1601102.
doi:10.1126/sciadv.1601102
|
[58] |
WAN W Q, QIAO W, HUANG W B,
et al. Multiview holographic 3D dynamic display by combining a nano-grating patterned phase plate and LCD[J].
Optics Express, 2017, 25(2): 1114-1122.
doi:10.1364/OE.25.001114
|
[59] |
FATTAL D, PENG ZH, TRAN T,
et al. A multi-directional backlight for a wide-angle, glasses-free three-dimensional display[J].
Nature, 2013, 495(7441): 348-351.
doi:10.1038/nature11972
|
[60] |
LIPPMANN G. Épreuves réversibles donnant la sensation du relief[J].
Journal de Physique Théorique et Appliquée, 1908, 7(1): 821-825.
|
[61] |
ADELSON E H, WANG J Y A. Single lens stereo with a plenoptic camera[J].
IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 99-106.
doi:10.1109/34.121783
|
[62] |
BOK Y, JEON H G, KWEON I S. Geometric calibration of micro-lens-based light field cameras using line features[J].
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(2): 287-300.
doi:10.1109/TPAMI.2016.2541145
|
[63] |
SHEN K C, KU CH T, HSIEH C,
et al. Deep-ultraviolet hyperbolic metacavity laser[J].
Advanced Materials, 2018, 30(21): 1706918.
doi:10.1002/adma.201706918
|
[64] |
GONGORA J S T, MIROSHNICHENKO A E, KIVSHAR Y S,
et al. Anapole nanolasers for mode-locking and ultrafast pulse generation[J].
Nature Communications, 2017, 8: 15535.
doi:10.1038/ncomms15535
|
[65] |
ZHANG Q, LI G Y, LIU X F,
et al. A room temperature low-threshold ultraviolet plasmonic nanolaser[J].
Nature Communications, 2014, 5: 4953.
doi:10.1038/ncomms5953
|
[66] |
ZHANG W X, XIE X, HAO H M,
et al. Low-threshold topological nanolasers based on the second-order corner state[J].
Light:
Science&
Applications, 2020, 9: 109.
|
[67] |
MELENTIEV P, KALMYKOV A, GRITCHENKO A,
et al. Plasmonic nanolaser for intracavity spectroscopy and sensorics[J].
Applied Physics Letters, 2017, 111(21): 213104.
doi:10.1063/1.5003655
|
[68] |
SWEATT W C. Achromatic triplet using holographic optical elements[J].
Applied Optics, 1977, 16(5): 1390-1391.
doi:10.1364/AO.16.001390
|
[69] |
AVAYU O, ALMEIDA E, PRIOR Y,
et al. Composite functional metasurfaces for multispectral achromatic optics[J].
Nature Communications, 2017, 8: 14992.
doi:10.1038/ncomms14992
|
[70] |
LIN D M, HOLSTEEN A L, MAGUID E,
et al. Photonic multitasking interleaved Si nanoantenna phased array[J].
Nano Letters, 2016, 16(12): 7671-7676.
doi:10.1021/acs.nanolett.6b03505
|
[71] |
ARBABI E, ARBABI A, KAMALI S M,
et al. Multiwavelength metasurfaces through spatial multiplexing[J].
Scientific Reports, 2016, 6: 32803.
doi:10.1038/srep32803
|
[72] |
ARBABI E, ARBABI A, KAMALI S M,
et al. High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms[J].
Optics Express, 2016, 24(16): 18468-18477.
doi:10.1364/OE.24.018468
|
[73] |
ARBABI E, LI J Q, HUTCHINS R J,
et al. Two-photon microscopy with a double-wavelength metasurface objective lens[J].
Nano Letters, 2018, 18(8): 4943-4948.
doi:10.1021/acs.nanolett.8b01737
|
[74] |
EISENBACH O, AVAYU O, DITCOVSKI R,
et al. Metasurfaces based dual wavelength diffractive lenses[J].
Optics Express, 2015, 23(4): 3928-3936.
doi:10.1364/OE.23.003928
|
[75] |
WANG P, MOHAMMAD N, MENON R. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing[J].
Scientific Reports, 2016, 6: 21545.
doi:10.1038/srep21545
|
[76] |
HU J T, LIU CH H, REN X CH,
et al. Plasmonic lattice lenses for multiwavelength achromatic focusing[J].
ACS Nano, 2016, 10(11): 10275-10282.
doi:10.1021/acsnano.6b05855
|
[77] |
ZHAO Z Y, PU M B, GAO H,
et al. Multispectral optical metasurfaces enabled by achromatic phase transition[J].
Scientific Reports, 2015, 5: 15781.
doi:10.1038/srep15781
|
[78] |
KHORASANINEJAD M, SHI Z, ZHU A Y,
et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J].
Nano Letters, 2017, 17(3): 1819-1824.
doi:10.1021/acs.nanolett.6b05137
|
[79] |
ARBABI E, ARBABI A, KAMALI S M,
et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces[J].
Optica, 2017, 4(6): 625-632.
doi:10.1364/OPTICA.4.000625
|
[80] |
WANG SH M, WU P C, SU V C,
et al. Broadband achromatic optical metasurface devices[J].
Nature Communications, 2017, 8(1): 187.
doi:10.1038/s41467-017-00166-7
|
[81] |
WANG SH M, WU P C, SU V C,
et al. A broadband achromatic metalens in the visible[J].
Nature Nanotechnology, 2018, 13(3): 227-232.
doi:10.1038/s41565-017-0052-4
|
[82] |
CHEN W T, ZHU A Y, SANJEEV V,
et al. A broadband achromatic metalens for focusing and imaging in the visible[J].
Nature Nanotechnology, 2018, 13(3): 220-226.
doi:10.1038/s41565-017-0034-6
|
[83] |
SHRESTHA S, OVERVIG A C, LU M,
et al. Broadband achromatic dielectric metalenses[J].
Light:
Science&
Applications, 2018, 7: 85.
|
[84] |
CHEN W T, ZHU A Y, SISLER J,
et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures[J].
Nature Communications, 2019, 10(1): 355.
doi:10.1038/s41467-019-08305-y
|
[85] |
NDAO A, HSU L, HA J,
et al. Octave bandwidth photonic fishnet-achromatic-metalens[J].
Nature Communications, 2020, 11(1): 3205.
doi:10.1038/s41467-020-17015-9
|
[86] |
CHEN W T, ZHU A Y, SISLER J,
et al. Broadband achromatic metasurface-refractive optics[J].
Nano Letters, 2018, 18(12): 7801-7808.
doi:10.1021/acs.nanolett.8b03567
|
[87] |
KHORASANINEJAD M, CHEN W T, OH J,
et al. Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy[J].
Nano Letters, 2016, 16(6): 3732-3737.
doi:10.1021/acs.nanolett.6b01097
|
[88] |
ZHU A Y, CHEN W T, SISLER J,
et al. Compact aberration‐corrected spectrometers in the visible using dispersion‐tailored metasurfaces[J].
Advanced Optical Materials, 2019, 7(14): 1801144.
doi:10.1002/adom.201801144
|
[89] |
FARAJI-DANA M, ARBABI E, ARBABI A,
et al. Compact folded metasurface spectrometer[J].
Nature Communications, 2018, 9(1): 4196.
doi:10.1038/s41467-018-06495-5
|
[90] |
LI K, GUO Y H, PU M B,
et al. Dispersion controlling meta-lens at visible frequency[J].
Optics Express, 2017, 25(18): 21419-21427.
doi:10.1364/OE.25.021419
|
[91] |
SISLER J, CHEN W T, ZHU A Y,
et al. Controlling dispersion in multifunctional metasurfaces[J].
APL Photonics, 2020, 5(5): 056107.
doi:10.1063/1.5142637
|
[92] |
CHEN B H, WU P C, SU V C,
et al. GaN metalens for pixel-level full-color routing at visible light[J].
Nano Letters, 2017, 17(10): 6345-6352.
doi:10.1021/acs.nanolett.7b03135
|
[93] |
WANG B, DONG F L, LI Q T,
et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J].
Nano Letters, 2016, 16(8): 5235-5240.
doi:10.1021/acs.nanolett.6b02326
|
[94] |
ROTH D J, JIN M K, MINOVICH A E,
et al. 3D full-color image projection based on reflective metasurfaces under incoherent illumination[J].
Nano Letters, 2020, 20(6): 4481-4486.
doi:10.1021/acs.nanolett.0c01273
|
[95] |
LI ZH Y, LIN P, HUANG Y W,
et al. Meta-optics achieves RGB-achromatic focusing for virtual reality[J].
Science Advances, 2021, 7(5): eabe4458.
doi:10.1126/sciadv.abe4458
|
[96] |
CHEN CH, SONG W G, CHEN J W,
et al. Spectral tomographic imaging with aplanatic metalens[J].
Light:
Science&
Applications, 2019, 8: 99.
|
[97] |
PAHLEVANINEZHAD H, KHORASANINEJAD M, HUANG Y W,
et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo[J].
Nature Photonics, 2018, 12(9): 540-547.
doi:10.1038/s41566-018-0224-2
|
[98] |
LIN R J, SU V C, WANG SH M,
et al. Achromatic metalens array for full-colour light-field imaging[J].
Nature Nanotechnology, 2019, 14(3): 227-231.
doi:10.1038/s41565-018-0347-0
|
[99] |
FAN ZH B, QIU H Y, ZHANG H L,
et al. A broadband achromatic metalens array for integral imaging in the visible[J].
Light:
Science&
Applications, 2019, 8: 67.
|