Citation: | YUAN De-bo, XU Liang, ZHANG Wen-bin, ZHOU Zhi-yong, DONG Xiao-hao, LIU Zheng-kun, ZHANG Guo-bin. Development of a 36-element piezoelectric deformable mirror for synchrotron radiation and its surface control ability[J].Chinese Optics, 2021, 14(6): 1362-1367.doi:10.37188/CO.2021-0103 |
[1] |
李晓东, 袁清习, 徐伟, 等. 第四代高能同步辐射光源HEPS及高压相关线站建设[J]. 高压物理学报,2020,34(5):050101.
doi:10.11858/gywlxb.20200554
LI X D, YUAN Q X, XU W,
et al. Introduction of fourth-generation high energy photon source HEPS and the beamlines for high-pressure research[J].
Chinese Journal of High Pressure Physics, 2020, 34(5): 050101. (in Chinese)
doi:10.11858/gywlxb.20200554
|
[2] |
MATSUYAMA S, NAKAMORI H, GOTO T,
et al. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors[J].
Scientific Reports, 2016, 6(1): 24801.
doi:10.1038/srep24801
|
[3] |
COCCO D, BORTOLETTO G, SERGO R,
et al. A hybrid active optical system for wave front preservation and variable focal distance[J].
Nuclear Instruments and Methods in Physics Research Section A:
Accelerators,
Spectrometers,
Detectors and Associated Equipment, 2010, 616(2/3): 128-133.
|
[4] |
IDIR M, MERCERE P, MODI M H,
et al. X-ray active mirror coupled with a Hartmann wavefront sensor[J].
Nuclear Instruments and Methods in Physics Research Section A:
Accelerators,
Spectrometers,
Detectors and Associated Equipment, 2010, 616(2/3): 162-171.
|
[5] |
ALCOCK S G, SUTTER J P, SAWHNEY K J S,
et al. Bimorph mirrors: the good, the bad, and the ugly[J].
Nuclear Instruments and Methods in Physics Research Section A:
Accelerators,
Spectrometers,
Detectors and Associated Equipment, 2013, 710: 87-92.
|
[6] |
JUNG H, GWEON D G. Creep characteristics of piezoelectric actuators[J].
Review of Scientific Instruments, 2000, 71(4): 1896-1900.
doi:10.1063/1.1150559
|
[7] |
SUTTER J P, CHATER P A, SIGNORATO R,
et al. 1 m long multilayer-coated deformable piezoelectric bimorph mirror for adjustable focusing of high-energy X-rays[J].
Optics Express, 2019, 27(11): 16121-16142.
doi:10.1364/OE.27.016121
|
[8] |
ALCOCK S G, NISTEA I T, SIGNORATO R,
et al. Dynamic adaptive X-ray optics. Part I. Time-resolved optical metrology investigation of the bending behaviour of piezoelectric bimorph deformable X-ray mirrors[J].
Journal of Synchrotron Radiation, 2019, 26(Pt 1): 36-44.
|
[9] |
ALCOCK S G, NISTEA I T, SIGNORATO R,
et al. Dynamic adaptive X-ray optics. Part II. High-speed piezoelectric bimorph deformable Kirkpatrick-Baez mirrors for rapid variation of the 2D size and shape of X-ray beams[J].
Journal of Synchrotron Radiation, 2019, 26(Pt 1): 45-51.
|
[10] |
ALCOCK S G, NISTEA I T, BADAMI V G,
et al. High-speed adaptive optics using bimorph deformable X-ray mirrors[J].
Review of Scientific Instruments, 2019, 90(2): 021712.
doi:10.1063/1.5060737
|
[11] |
JIANG H, TIAN N X, LIANG D X,
et al. A piezoelectric deformable X-ray mirror for phase compensation based on global optimization[J].
Journal of Synchrotron Radiation, 2019, 26(Pt 3): 729-736.
|
[12] |
ALCOCK S G, NISTEA I, SAWHNEY K. Nano-metrology: the art of measuring X-ray mirrors with slope errors < 100 nrad[J].
Review of Scientific Instruments, 2016, 87(5): 051902.
doi:10.1063/1.4949272
|
[13] |
王建立, 董玉磊, 姚凯男, 等. 349单元自适应光学波前处理器[J]. 光学 精密工程,2018,26(5):1007-1013.
doi:10.3788/OPE.20182605.1007
WANG J L, DONG Y L, YAO K N,
et al. Three hundred and fourty-nine unit adaptive optical wavefront processor[J].
Optics and Precision Engineering, 2018, 26(5): 1007-1013. (in Chinese)
doi:10.3788/OPE.20182605.1007
|
[14] |
马剑强, 刘莹, 陈俊杰, 等. 200单元硅基单压电变形镜的设计与测试[J]. 光学 精密工程,2014,22(8):2047-2053.
doi:10.3788/OPE.20142208.2047
MA J Q, LIU Y, CHEN J J,
et al. Design and performance testing of 200-element silicon unimorph deformable mirror[J].
Optics and Precision Engineering, 2014, 22(8): 2047-2053. (in Chinese)
doi:10.3788/OPE.20142208.2047
|
[15] |
林旭东, 刘欣悦, 王建立, 等. 137单元变形镜的性能测试及校正能力实验[J]. 光学 精密工程,2013,21(2):267-273.
doi:10.3788/OPE.20132102.0267
LIN X D, LIU X Y, WANG J L,
et al. Performance test and experiment of correction capability of 137-element deformable mirror[J].
Optics and Precision Engineering, 2013, 21(2): 267-273. (in Chinese)
doi:10.3788/OPE.20132102.0267
|
[16] |
金利民, 罗红心, 王劼, 等. 双压电片镜在同步辐射光源光学系统中的应用[J]. 中国光学,2017,10(6):699-707.
doi:10.3788/co.20171006.0699
JIN L M, LUO H X, WANG J,
et al. Application of bimorph mirror in the optical system of synchrotron radiation light source[J].
Chinese Optics, 2017, 10(6): 699-707. (in Chinese)
doi:10.3788/co.20171006.0699
|
[17] |
彭泰然, 李文来, 娄军强, 等. 正电压边缘驱动的双压电片变形镜研制[J]. 光子学报,2019,48(8):0822003.
doi:10.3788/gzxb20194808.0822003
PENG T R, LI W L, LOU J Q,
et al. Development of a bimorph deformable mirror driven by positive-voltage actuators at edge[J].
Acta Photonica Sinica, 2019, 48(8): 0822003. (in Chinese)
doi:10.3788/gzxb20194808.0822003
|
[18] |
NING Y, JIANG W H, LING N,
et al. Response function calculation and sensitivity comparison analysis of various bimorph deformable mirrors[J].
Optics Express, 2007, 15(19): 12030-12038.
doi:10.1364/OE.15.012030
|
[19] |
姜文汉. 自适应光学发展综述[J]. 光电工程,2018,45(3):170489.
JIANG W H. Overview of adaptive optics development[J].
Opto-Electronic Engineering, 2018, 45(3): 170489. (in Chinese)
|
[20] |
张瑶, 汤善治, 李明, 等. 同步辐射中双压电片反射镜的研究现状[J]. 物理学报,2016,65(1):010702.
doi:10.7498/aps.65.010702
ZHANG Y, TANG SH ZH, LI M,
et al. Present research status of piezoelectric bimorph mirrors in synchrotron radiation sources[J].
Acta Physica Sinica, 2016, 65(1): 010702. (in Chinese)
doi:10.7498/aps.65.010702
|
[21] |
ALCOCK S G, NISTEA I, SUTTER J P,
et al. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines[J].
Journal of Synchrotron Radiation, 2015, 22(1): 10-15.
doi:10.1107/S1600577514020025
|
[22] |
ICHII Y, OKADA H, NAKAMORI H,
et al. Development of a glue-free bimorph mirror for use in vacuum chambers[J].
Review of Scientific Instruments, 2019, 90(2): 021702.
doi:10.1063/1.5066105
|