Citation: | DANG Wen-jia, GAO Qi, LI Zhe, LI Gang. Research progress of tunable fiber light sources with wavelength near 1 μm[J]. Chinese Optics, 2021, 14(5): 1120-1132. doi: 10.37188/CO.2021-0125 |
[1] |
NILSSON J, CLARKSON W A, SELVAS R, et al. High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers[J]. Optical Fiber Technology, 2004, 10(1): 5-30. doi: 10.1016/j.yofte.2003.07.001
|
[2] |
KOESTER C J, SNITZER E. Amplification in a fiber laser[J]. Applied Optics, 1964, 3(10): 1182-1186. doi: 10.1364/AO.3.001182
|
[3] |
JAUREGUI C, LIMPERT J, TÜNNERMANN A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867. doi: 10.1038/nphoton.2013.273
|
[4] |
党文佳, 李哲, 李玉婷, 等. 高功率连续波掺镱光纤金宝搏188软件怎么用
器研究进展[J]. 中国光学,2020,13(4):676-694. doi: 10.37188/CO.2019-0208
DANG W J, LI ZH, LI Y T, et al. Recent advances in high-power continuous-wave ytterbium-doped fiber lasers[J]. Chinese Optics, 2020, 13(4): 676-694. (in Chinese) doi: 10.37188/CO.2019-0208
|
[5] |
ZERVAS M N. High power ytterbium-doped fiber lasers—fundamentals and applications[J]. International Journal of Modern Physics B, 2014, 28(12): 1442009. doi: 10.1142/S0217979214420090
|
[6] |
TER-MIKIRTYCHEV V. Fundamentals of Fiber Lasers and Fiber Amplifiers[M]. New York: Springer, 2014.
|
[7] |
韩辉云. 可调谐掺镱光纤金宝搏188软件怎么用
器理论和实验研究[D]. 石家庄: 河北师范大学, 2019
HAN H Y. Theoretical and experimental study on tunable ytterbium-doped fiber laser[D]. Shijiazhuang: Hebei Normal University, 2019. (in Chinese)
|
[8] |
HIDEUR A, CHARTIER T, Ö ZKUL C, et al. All-fiber tunable ytterbium-doped double-clad fiber ring laser[J]. Optics Letters, 2001, 26(14): 1054-1056. doi: 10.1364/OL.26.001054
|
[9] |
AUERBACH M, ADEL P, WANDT D, et al. 10 W widely tunable narrow linewidth double-clad fiber ring laser[J]. Optics Express, 2002, 10(2): 139-144. doi: 10.1364/OE.10.000139
|
[10] |
SILVA A, BOLLER K J, LINDSAY I D. Wavelength-swept Yb-fiber master-oscillator-power-amplifier with 70 nm rapid tuning range[J]. Optics Express, 2011, 19(11): 10511-10517. doi: 10.1364/OE.19.010511
|
[11] |
ROYON R, LHERMITE J, SARGER L, et al. High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm[J]. Optics Express, 2013, 21(11): 13818-13823. doi: 10.1364/OE.21.013818
|
[12] |
HU J M, ZHANG L, FENG Y. Widely tunable Yb-doped all-fiber laser from 1.0 to 1.1 μm[C]. Advanced Solid State Lasers 2014, Optical Society of America, 2014: AM5A.22.
|
[13] |
BALASWAMY V, APARANJI S, CHAYRAN G, et al. High-power, independently wavelength, power, and linewidth tunable ytterbium fiber laser[J]. IEEE Photonics Technology Letters, 2019, 31(8): 583-586. doi: 10.1109/LPT.2019.2901504
|
[14] |
TIAN J D, XIAO Q R, LI D, et al. Tandem-pumped high-power narrow-linewidth fiber laser tunable from 1060–1090 nm[J]. Journal of Lightwave Technology, 2020, 38(6): 1461-1467. doi: 10.1109/JLT.2019.2954536
|
[15] |
FU SH G, FAN W D, ZHANG Q, et al. Tunable Yb-doped double-clad fibre laser based on fibre Bragg grating with narrow linewidth[J]. Chinese Physics Letters, 2004, 21(7): 1279-1281. doi: 10.1088/0256-307X/21/7/026
|
[16] |
SELVAS R, TORRES-GOMEZ I, MARTINEZ-RIOS A, et al. Wavelength tuning of fiber lasers using multimode interference effects[J]. Optics Express, 2005, 13(23): 9439-9445. doi: 10.1364/OPEX.13.009439
|
[17] |
刘胜利, 李乙钢, 高艳丽, 等. 高功率宽调谐范围掺Yb3+光子晶体光纤金宝搏188软件怎么用
器 [J]. 光学学报,2007,27(9):1663-1667. doi: 10.3321/j.issn:0253-2239.2007.09.024
LIU SH L, LI Y G, GAO Y L, et al. High-power widely tunable Yb-doped photonic crystal fiber laser[J]. Acta Optica Sinica, 2007, 27(9): 1663-1667. (in Chinese) doi: 10.3321/j.issn:0253-2239.2007.09.024
|
[18] |
HILDEBRANDT M, FREDE M, KRACHT D. Narrow-linewidth ytterbium-doped fiber amplifier system with 45 nm tuning range and 133 W of output power[J]. Optics Letters, 2007, 32(16): 2345-2347. doi: 10.1364/OL.32.002345
|
[19] |
JELGER P, LAURELL F. Efficient skew-angle cladding-pumped tunable narrow-linewidth Yb-doped fiber laser[J]. Optics Letters, 2007, 32(24): 3501-3503. doi: 10.1364/OL.32.003501
|
[20] |
ZEIL P, PASISKEVICIUS V, LAURELL F. Efficient spectral control and tuning of a high-power narrow-linewidth Yb-doped fiber laser using a transversely chirped volume Bragg grating[J]. Optics Express, 2013, 21(4): 4027-4035. doi: 10.1364/OE.21.004027
|
[21] |
FAN Y Y, YE CH CH, WU C Y, et al. High-power narrow-linewidth wavelength-tunable Yb3+-doped double-clad fiber lasers[J]. Proceedings of SPIE, 2008, 7134: 71342H. doi: 10.1117/12.803303
|
[22] |
YAGODKIN R, PLATONOV N, YUSIM A, et al. > 1.5kW narrow linewidth CW diffraction-limited fiber amplifier with 40nm bandwidth[J]. Proceedings of SPIE, 2016, 9728: 972807.
|
[23] |
LIU Y K, SU R T, MA P F, et al. > 1 kW all-fiberized narrow-linewidth polarization-maintained fiber amplifiers with wavelength spanning from 1065 to 1090 nm[J]. Applied Optics, 2017, 56(14): 4213-4218. doi: 10.1364/AO.56.004213
|
[24] |
王安廷, 李锋, 黄晶, 等. 可调谐单频掺镱光纤DBR金宝搏188软件怎么用
器[J]. 量子电子学报,2005,22(4):607-611. doi: 10.3969/j.issn.1007-5461.2005.04.024
WANG A T, LI F, HUANG J, et al. Tunable single-frequency ytterbium-doped fiber BDR laser[J]. Chinese Journal of Quantum Electronics, 2005, 22(4): 607-611. (in Chinese) doi: 10.3969/j.issn.1007-5461.2005.04.024
|
[25] |
ENGELBRECHT M, RUEHL A, WANDT D, et al. Single-frequency ytterbium-doped fiber laser with 26 nm tuning range[J]. Optics Express, 2007, 15(8): 4617-4622. doi: 10.1364/OE.15.004617
|
[26] |
YIN F F, YANG S G, CHEN H W, et al. 60-nm-wide tunable single-longitudinal-mode ytterbium fiber laser with passive multiple-ring cavity[J]. IEEE Photonics Technology Letters, 2011, 23(22): 1658-1660. doi: 10.1109/LPT.2011.2166112
|
[27] |
WANG K L, LU B L, QI X Y, et al. Wavelength-tunable single-frequency ytterbium-doped fiber laser based on a double-circulator interferometer[J]. Laser Physics Letters, 2019, 16(1): 015104. doi: 10.1088/1612-202X/aaf175
|
[28] |
马选选, 陆宝乐, 王凯乐, 等. 宽带可调谐单频窄线宽光纤金宝搏188软件怎么用
器[J]. 光学学报,2019,39(1):0114001. doi: 10.3788/AOS201939.0114001
MA X X, LU B L, WANG K L, et al. Tunable broadband single-frequency narrow-linewidth fiber laser[J]. Acta Optica Sinica, 2019, 39(1): 0114001. (in Chinese) doi: 10.3788/AOS201939.0114001
|
[29] |
冯衍, 姜华卫, 张磊. 高功率拉曼光纤金宝搏188软件怎么用
器技术研究进展[J]. 中国金宝搏188软件怎么用
,2017,44(2):0201005. doi: 10.3788/CJL201744.0201005
FENG Y, JIANG H W, ZHANG L. Advances in high power Raman fiber laser technology[J]. Chinese Journal of Lasers, 2017, 44(2): 0201005. (in Chinese) doi: 10.3788/CJL201744.0201005
|
[30] |
LIN C, STOLEN R H, FRENCH W G, et al. A cw tunable near-infrared (1.085–1.175μm) Raman oscillator[J]. Optics Letters, 1977, 1(3): 96-97. doi: 10.1364/OL.1.000096
|
[31] |
CIERULLIES S, LIM E L, BRINKMEYER E. Ad-fiber widely tunable Raman laser in a combined linear and sagnac-loop configuration[C]. OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005, IEEE, 2005: 31-33.
|
[32] |
BABIN S A, KABLUKOV S I, VLASOV A A. Tunable fiber Bragg gratings for application in tunable fiber lasers[J]. Laser Physics, 2007, 17(11): 1323-1326. doi: 10.1134/S1054660X07110096
|
[33] |
BELANGER E, BERNIER M, FAUCHER D, et al. High-power and widely tunable all-fiber Raman laser[J]. Journal of Lightwave Technology, 2008, 26(12): 1696-1701. doi: 10.1109/JLT.2008.922337
|
[34] |
ANQUEZ F, COURTADE E, SIVÉRY A, et al. A high-power tunable Raman fiber ring laser for the investigation of singlet oxygen production from direct laser excitation around 1270 nm[J]. Optics Express, 2010, 18(22): 22928-22936. doi: 10.1364/OE.18.022928
|
[35] |
REKAS M, SCHMIDT O, ZIMER H, et al. Over 200 W average power tunable Raman amplifier based on fused silica step index fiber[J]. Applied Physics B, 2012, 107(3): 711-716. doi: 10.1007/s00340-012-5052-3
|
[36] |
AGRAWAL G P. Nonlinear fiber optics: its history and recent progress [Invited][J]. Journal of the Optical Society of America B, 2011, 28(12): A1-A10. doi: 10.1364/JOSAB.28.0000A1
|
[37] |
SONG J X, WU H SH, XU J M, et al. High-power linearly-polarized tunable Raman fiber laser[J]. Chinese Physics B, 2018, 27(9): 094209. doi: 10.1088/1674-1056/27/9/094209
|
[38] |
TURITSYN S K, BABIN S A, CHURKIN D V, et al. Random distributed feedback fibre lasers[J]. Physics Reports, 2014, 542(2): 133-193. doi: 10.1016/j.physrep.2014.02.011
|
[39] |
党文佳, 李哲, 卢娜, 等. 0.9~1.0 μm近红外连续光纤金宝搏188软件怎么用
器的研究进展[J]. 中国光学,2021,14(2):264-274. doi: 10.37188/CO.2020-0193
DANG W J, LI ZH, LU N, et al. Research progress of 0.9~1.0 μm near-infrared continuous-wave fiber lasers[J]. Chinese Optics, 2021, 14(2): 264-274. (in Chinese) doi: 10.37188/CO.2020-0193
|
[40] |
DU X Y, ZHANG H W, WANG X L, et al. Tunable random distributed feedback fiber laser operating at 1 μm[J]. Applied Optics, 2015, 54(4): 908-911. doi: 10.1364/AO.54.000908
|
[41] |
YE J, XU J M, SONG J X, et al. Flexible spectral manipulation property of a high power linearly polarized random fiber laser[J]. Scientific Reports, 2018, 8(1): 2173. doi: 10.1038/s41598-018-20664-y
|
[42] |
WU H SH, SONG J X, YE J, et al. Hundred-watt-level linearly polarized tunable Raman random fiber laser[J]. Chinese Optics Letters, 2018, 16(6): 061402. doi: 10.3788/COL201816.061402
|
[43] |
ZHANG L, JIANG H W, YANG X Z, et al. Ultra-wide wavelength tuning of a cascaded Raman random fiber laser[J]. Optics Letters, 2016, 41(2): 215-218. doi: 10.1364/OL.41.000215
|
[44] |
ZHANG L, JIANG H W, YANG X Z, et al. Nearly-octave wavelength tuning of a continuous wave fiber laser[J]. Scientific Reports, 2017, 7: 42611. doi: 10.1038/srep42611
|
[45] |
ZHANG L, DONG J Y, FENG Y. High-power and high-order random Raman fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1400106.
|
[46] |
BALASWAMY V, APARANJI S, ARUN S, et al.. High power, ultra-widely tunable wavelength, cascaded Raman fiber laser[C]. CLEO: Science and Innovations 2018, Optical Society of America, 2018: SM1K.4.
|
[47] |
BALASWAMY V, RAMACHANDRAN S, SUPRADEEPA V R. High-power, cascaded random Raman fiber laser with near complete conversion over wide wavelength and power tuning[J]. Optics Express, 2019, 27(7): 9725-9732. doi: 10.1364/OE.27.009725
|
[48] |
李乙钢, 刘伟伟, 傅成鹏, 等. 大功率掺Yb双包层光纤宽带超荧光光源[J]. 光学学报,2001,21(10):1171-1173. doi: 10.3321/j.issn:0253-2239.2001.10.005
LI Y G, LIU W W, FU CH P, et al. High-power Yb-doped double-cladding fiber broadband superfluorescent source[J]. Acta Optica Sinica, 2001, 21(10): 1171-1173. (in Chinese) doi: 10.3321/j.issn:0253-2239.2001.10.005
|
[49] |
WANG P, CLARKSON W A. Tunable Yb-doped fibre amplified spontaneous emission source[C]. Conference on Lasers and Electro-Optics 2009, Optical Society of America, 2009: CFM6.
|
[50] |
YE J, XU J M, ZHANG Y, et al. Spectrum-manipulable hundred-watt-level high-power superfluorescent fiber source[J]. Journal of Lightwave Technology, 2019, 37(13): 3113-3118. doi: 10.1109/JLT.2019.2911007
|
[51] |
吴鹏. 高功率掺镱光纤超荧光光源技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2019
WU P. Study on the technology of high-power Yb-doped superfluorescent fiber source[D]. Xi’an: University of Chinese Academy of Sciences (Xi’an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences), 2019. (in Chinese)
|
[52] |
WU P, ZHAO B Y, ZHAO W, et al. Optimization investigation for high-power 1034 nm all-fiber narrowband Yb-doped superfluorescent source[J]. Optics Communications, 2019, 445: 187-192. doi: 10.1016/j.optcom.2019.04.033
|
[53] |
WU P, ZHAO B Y, ZHAO W, et al. 30 W all-fiber tunable, narrowband Yb-doped superfluorescent fiber source[J]. Infrared Physics &Technology, 2018, 92: 363-366.
|
[54] |
GAO W, FAN W H, ZHANG Y P, et al. High-power tunable sub-nm narrowband near-diffraction-limited superfluorescent fiber source based on a single-lens spectral filter[J]. Optics Communications, 2020, 463: 125359. doi: 10.1016/j.optcom.2020.125359
|
[55] |
JU P, FAN W H, ZHAO B Y, et al. High power, tunable, ultra-narrowband Yb-doped superfluorescent fiber source operating at wavelength less than 1055 nm with 20 nm tuning range[J]. Infrared Physics &Technology, 2020, 111: 103530.
|
[56] |
LI ZH, LI G, GAO Q, et al. Kilowatt-level tunable all-fiber narrowband superfluorescent fiber source with 40 nm tuning range[J]. Optics Express, 2020, 28(7): 10378-10385. doi: 10.1364/OE.387405
|
[57] |
ZHENG Y, YANG Y F, WANG J H, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11): 12063-12071. doi: 10.1364/OE.24.012063
|