Citation: | CHEN Jie, TONG Yi-cheng, XIAO Da, ZHANG Kai, LIU Chong, LIU Dong. Retrieval methods for extinction-to-backscatter ratio of atmospheric aerosols[J].Chinese Optics, 2021, 14(6): 1305-1316.doi:10.37188/CO.2021-0135 |
[1] |
陈良富, 李莘莘, 陶金花, 等. 气溶胶遥感定量反演研究与应用[M]. 北京: 科学出版社, 2011.
CHEN L F, LI SH SH, TAO J H,
et al..
Research and Application of Aerosol Remote Sensing Quantitative Inversion[M]. Beijing: Science Press, 2001. (in Chinese)
|
[2] |
EVANS B T N. Sensitivity of the backscatter/extinction ratio to changes in aerosol properties: implications for lidar[J].
Applied Optics, 1988, 27(15): 3299-3305.
doi:10.1364/AO.27.003299
|
[3] |
FERNALD F G. Analysis of atmospheric lidar observations: some comments[J].
Applied Optics, 1984, 23(5): 652-653.
doi:10.1364/AO.23.000652
|
[4] |
KIM M H, OMAR A H, TACKETT J L,
et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm[J].
Atmospheric Measurement Techniques, 2018, 11(11): 6107-6135.
doi:10.5194/amt-11-6107-2018
|
[5] |
SALGUEIRO V, COSTA M J, GUERRERO-RASCADO J L,
et al. Characterization of forest fire and Saharan desert dust aerosols over south-western Europe using a multi-wavelength Raman lidar and Sun-photometer[J].
Atmospheric Environment, 2021, 252: 118346.
doi:10.1016/j.atmosenv.2021.118346
|
[6] |
ZHAO G, ZHAO CH SH, KUANG Y,
et al. Impact of aerosol hygroscopic growth on retrieving aerosol extinction coefficient profiles from elastic-backscatter lidar signals[J].
Atmospheric Chemistry and Physics, 2017, 17(19): 12133-12143.
doi:10.5194/acp-17-12133-2017
|
[7] |
DIONISI D, BARNABA F, DIÉMOZ H,
et al. A multiwavelength numerical model in support of quantitative retrievals of aerosol properties from automated lidar ceilometers and test applications for AOT and PM
10estimation[J].
Atmospheric Measurement Techniques, 2018, 11(11): 6013-6042.
doi:10.5194/amt-11-6013-2018
|
[8] |
GASTEIGER J, WIEGNER M. MOPSMAP v1.0: a versatile tool for the modeling of aerosol optical properties[J].
Geoscientific Model Development, 2018, 11(7): 2739-2762.
doi:10.5194/gmd-11-2739-2018
|
[9] |
DOHERTY S J, ANDERSON T L, CHARLSON R J. Measurement of the lidar ratio for atmospheric aerosols with a 180° backscatter nephelometer[J].
Applied Optics, 1999, 38(9): 1823-1832.
doi:10.1364/AO.38.001823
|
[10] |
童奕澄, 童学东, 张凯, 等. 偏振 雷达增益比定标方法对比研究[J]. 中国光学,2021,14(3):685-703.
doi:10.37188/CO.2020-0136
TONG Y CH, TONG X D, ZHANG K,
et al. Polarization lidar gain ratio calibration method: a comparison[J].
Chinese Optics, 2021, 14(3): 685-703. (in Chinese)
doi:10.37188/CO.2020-0136
|
[11] |
曲艺. 大气光学遥感监测技术现状与发展趋势[J]. 中国光学,2013,6(6):834-840.
QU Y. Technical status and development tendency of atmosphere optical remote and monitoring[J].
Chinese Optics, 2013, 6(6): 834-840. (in Chinese)
|
[12] |
DUBOVIK O, SINYUK A, LAPYONOK T,
et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust[J].
Journal of Geophysical Research:
Atmospheres, 2006, 111(D11): D11208.
doi:10.1029/2005JD006619
|
[13] |
YANG P, KATTAWAR G W, LIOU K N,
et al. Comparison of Cartesian grid configurations for application of the finite-difference time-domain method to electromagnetic scattering by dielectric particles[J].
Applied Optics, 2004, 43(23): 4611-4624.
doi:10.1364/AO.43.004611
|
[14] |
张朝阳, 苏林, 陈良富. 中国典型地区气溶胶 雷达比反演与分析[J]. 中国 ,2013,40(5):0513002.
doi:10.3788/CJL201340.0513002
ZHANG ZH Y, SU L, CHEN L F. Retrieval and analysis of aerosol lidar ratio at several typical regions in China[J].
Chinese Journal of Lasers, 2013, 40(5): 0513002. (in Chinese)
doi:10.3788/CJL201340.0513002
|
[15] |
WU M X, LIU X H, YU H B,
et al. Understanding processes that control dust spatial distributions with global climate models and satellite observations[J].
Atmospheric Chemistry and Physics, 2020, 20(22): 13835-13855.
doi:10.5194/acp-20-13835-2020
|
[16] |
陶金花, 李小英, 王子峰, 等. 大气遥感定量反演算法与系统[M]. 北京: 科学出版社, 2014.
TAO J H, LI X Y, WANG Z F,
et al..
Atmospheric Remote Sensing Quantitative Inversion Algorithm and System[M]. Beijing: Science Press, 2014. (in Chinese)
|
[17] |
李正强, 谢一凇, 洪津, 等. 星载对地观测偏振传感器及其大气遥感应用[J]. 大气与环境光学学报,2019,14(1):2-17.
LI ZH Q, XIE Y S, HONG J,
et al. Polarimetric satellite sensors for earth observation and applications in atmospheric remote sensing[J].
Journal of Atmospheric and Environmental Optics, 2019, 14(1): 2-17. (in Chinese)
|
[18] |
马小雨, 陈正华, 宿鑫, 等. GF-4增强型地表反射率库支持法的气溶胶光学厚度反演[J]. 遥感学报,2020,24(5):578-595.
MA X Y, CHEN ZH H, SU X,
et al. GF-4 aerosol retrieval study of enhanced surface reflectance library support algorithm[J].
Journal of Remote Sensing, 2020, 24(5): 578-595. (in Chinese)
|
[19] |
CHEN X F, DE LEEUW G, AROLA A. et al. Joint retrieval of the aerosol fine mode fraction and optical depth using MODIS spectral reflectance over northern and eastern China: artificial neural network method[J].
Remote Sensing of Environment, 2020, 249: 112006.
doi:10.1016/j.rse.2020.112006
|
[20] |
BRÉON F M. Aerosol extinction-to-backscatter ratio derived from passive satellite measurements[J].
Atmospheric Chemistry and Physics, 2013, 13(17): 8947-8954.
doi:10.5194/acp-13-8947-2013
|
[21] |
COMERÓN A, MUÑOZ-PORCAR C, ROCADENBOSCH F,
et al. Current research in lidar technology used for the remote sensing of atmospheric aerosols[J].
Sensors, 2017, 17(6): 1450.
doi:10.3390/s17061450
|
[22] |
田晓敏, 刘东, 徐继伟, 等. 大气探测 雷达技术综述[J]. 大气与环境光学学报,2018,13(5):321-341.
TIAN X M, LIU D, XU J W,
et al. Review of lidar technology for atmosphere monitoring[J].
Journal of Atmospheric and Environmental Optics, 2018, 13(5): 321-341. (in Chinese)
|
[23] |
刘东, 刘群, 白剑, 等. 星载 雷达CALIOP数据处理算法概述[J]. 红外与 工程,2017,46(12):1202001.
doi:10.3788/IRLA201746.1202001
LIU D, LIU Q, BAI J,
et al. Data processing algorithms of the space-borne lidar CALIOP: a review[J].
Infrared and Laser Engineering, 2017, 46(12): 1202001. (in Chinese)
doi:10.3788/IRLA201746.1202001
|
[24] |
JOSSET D, ROGERS R, PELON J,
et al. CALIPSO lidar ratio retrieval over the ocean[J].
Optics Express, 2011, 19(19): 18696-18706.
doi:10.1364/OE.19.018696
|
[25] |
SU J, MCCORMICK M P. Using multi-wavelength Mie-Raman lidar to measure low-level cloud properties[J].
Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 237: 106610.
doi:10.1016/j.jqsrt.2019.106610
|
[26] |
BOVCHALIUK V, GOLOUB P, PODVIN T,
et al. Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data[J].
Atmospheric Measurement Techniques, 2016, 9(7): 3391-3405.
doi:10.5194/amt-9-3391-2016
|
[27] |
CÓRDOBA-JABONERO C, LOPES F J S, LANDULFO E,
et al. Diversity on subtropical and polar cirrus clouds properties as derived from both ground-based lidars and CALIPSO/CALIOP measurements[J].
Atmospheric Research, 2017, 183: 151-165.
doi:10.1016/j.atmosres.2016.08.015
|
[28] |
华雯丽, 韩颖, 乔瀚洋, 等. 敦煌沙尘气溶胶质量浓度垂直特征个例分析[J]. 高原气象,2018,37(5):1428-1439.
HUA W L, HAN Y, QIAO H Y,
et al. Profiling of dust aerosol mass concentration over Dunhuang: case studies[J].
Plateau Meteorology, 2018, 37(5): 1428-1439. (in Chinese)
|
[29] |
TAO Z M, LIU ZH Y, WU D,
et al. Determination of aerosol extinction-to-backscatter ratios from simultaneous ground-based and spaceborne lidar measurements[J].
Optics Letters, 2008, 33(24): 2986-2988.
doi:10.1364/OL.33.002986
|
[30] |
SASANO Y, BROWELL E V. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations[J].
Applied Optics, 1989, 28(9): 1670-1679.
doi:10.1364/AO.28.001670
|
[31] |
KIM D, CHA H. Rotational Raman lidar for obtaining aerosol scattering coefficients[J].
Optics Letters, 2005, 30(13): 1728-1730.
doi:10.1364/OL.30.001728
|
[32] |
ANSMANN A, WANDINGER U, RIEBESELL M,
et al. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar[J].
Applied Optics, 1992, 31(33): 7113-7131.
doi:10.1364/AO.31.007113
|
[33] |
POVEY A C, GRAINGER R G, PETERS D M,
et al. Retrieval of aerosol backscatter, extinction, and lidar ratio from Raman lidar with optimal estimation[J].
Atmospheric Measurement Techniques, 2014, 7(3): 757-776.
doi:10.5194/amt-7-757-2014
|
[34] |
LI S W, DI H G, WANG Q Y,
et al. Retrieval of the aerosol extinction coefficient of 1064 nm based on high-spectral-resolution lidar[J].
Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 256: 107298.
doi:10.1016/j.jqsrt.2020.107298
|
[35] |
刘东, 周雨迪, 朱小磊, 等. 大气海洋高光谱分辨率 雷达鉴频特性研究[J]. 大气与环境光学学报,2020,15(1):48-54.
LIU D, ZHOU Y D, ZHU X L,
et al. Investigation on discrimination characteristics of atmospheric and oceanic high-spectral-resolution lidar[J].
Journal of Atmospheric and Environmental Optics, 2020, 15(1): 48-54. (in Chinese)
|
[36] |
戎宇航, 沈雪, 王南朝, 等. 双波长高光谱分辨率 雷达光谱鉴频器设计[J]. 光学学报,2021,41(4):0401001.
doi:10.3788/AOS202141.0401001
RONG Y H, SHEN X, WANG N CH,
et al. Design of dual-wavelength spectral discriminator for high-spectral-resolution lidar[J].
Acta Optica Sinica, 2021, 41(4): 0401001. (in Chinese)
doi:10.3788/AOS202141.0401001
|