Citation: | HUANG Hai-bi, LIU Wen-jie, SUN Yue-hui, WANG An-bang, QIN Yu-wen, WANG Yun-cai. Photonics generation of broadband millimeter wave noise signals with high excess noise ratios[J]. Chinese Optics, 2022, 15(2): 251-258. doi: 10.37188/CO.2021-0158 |
[1] |
王璐钰, 李玉琼, 蔡榕. 空间金宝搏188软件怎么用
干涉仪光程倾斜耦合噪声抑制[J]. 光学精密工程,2021,29(7):1491-1498.
WANG L Y, LI Y Q, CAI R. Optical path slanting coupling noise suppression in space laser interferometer[J]. Optics and Precision Engineering, 2021, 29(7): 1491-1498. (in Chinese)
|
[2] |
李乐, 汪龙祺, 黄煜, 等. 光电探测系统噪声特性研究与降噪设计[J]. 光学精密工程,2020,28(12):2674-2683.
LI L, WANG L Q, HUANG Y, et al. Research on noise characteristics and noise reduction design of photoelectric detection system[J]. Optics and Precision Engineering, 2020, 28(12): 2674-2683. (in Chinese)
|
[3] |
赵九龙, 马瑜, 李爽, 等. 三维医学图像的混合噪声去除方法[J]. 液晶与显示,2015,30(2):340-346.
ZHAO J L, MA Y, LI S.et al. Hybrid Noise Removal method for 3D medical image[J]. Liquid crystal and Display, 2015, 30(2): 340-346. (in Chinese)
|
[4] |
HSIAO H F, TU C H, CHANG D C, et al.. Noise figure verification using cold-Source and Y-factor technique for amplifier and down-converted mixer[C]. 2014 Asia-Pacific Microwave Conference, IEEE, 2014: 901-903.
|
[5] |
PARASHARE C R, KANGASLAHTI P P, BROWN S T, et al. . Noise sources for internal calibration of millimeter-wave radiometers[C]. 2014 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), IEEE, 2014: 157-160.
|
[6] |
SHAHRIAR C, PAN M L, LICHTMAN M, et al. PHY-layer resiliency in OFDM communications: a tutorial[J]. IEEE Communications Surveys &Tutorials, 2015, 17(1): 292-314.
|
[7] |
PAIK H, SASTRY N N, SANTIPRABHA I. Effectiveness of noise jamming with White Gaussian Noise and phase noise in amplitude comparison monopulse radar receivers[C]. 2014 IEEE International Conference on Electronics, IEEE, 2014: 1-5.
|
[8] |
余恒炜, 黎大兵, 孙晓娟, 等. 量子随机数高斯噪声信号发生器[J]. 光学精密工程,2019,27(7):1492-1499.
YU H W, LI D B, SUN X J, et al. Quantum Random number Gaussian Noise signal generator[J]. Optics and Precision Engineering, 2019, 27(7): 1492-1499. (in Chinese)
|
[9] |
BELAND P, LABONTE S, ROY L, et al. A novel on-wafer resistive noise source[J]. IEEE Microwave and Guided Wave Letters, 1999, 9(6): 227-229. doi: 10.1109/75.769529
|
[10] |
梁伟军, 高秋来. WR28低温标准噪声源[J]. 科学技术与工程,2011,11(31):7672-7676,7681. doi: 10.3969/j.issn.1671-1815.2011.31.018
LIANG W J, GAO Q L. A WR28 cryogenic standard noise source[J]. Science Technology and Engineering, 2011, 11(31): 7672-7676,7681. (in Chinese) doi: 10.3969/j.issn.1671-1815.2011.31.018
|
[11] |
PAWAR N Y, GANGAL S A, SHALIGRAM A D, et al. Development of X-band microwave noise source using neon gas fluorescent gas discharge tube[J]. AIP Conference Proceedings, 2021, 2335(1): 050002.
|
[12] |
曹逸庭. 3mm肖特基势垒二极管雪崩噪声源[J]. 红外与毫米波学报,1990,9(4):317-320.
CAO Y T. Avalanche noise source of Schottky barrier diode in the 3 mm band[J]. Journal of Infrared and Millimeter Waves, 1990, 9(4): 317-320. (in Chinese)
|
[13] |
GHANEM H, GONÇALVES J C A, CHEVALIER P, et al. Modeling and analysis of a broadband schottky diode noise source up to 325 GHz based on 55-nm SiGe BiCMOS technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(6): 2268-2277. doi: 10.1109/TMTT.2020.2980513
|
[14] |
刘玉栋, 杜磊, 孙鹏, 等. 静电放电对功率肖特基二极管I-V及低频噪声特性的影响[J]. 物理学报,2012,61(13):137203. doi: 10.7498/aps.61.137203
LIU Y D, DU L, SUN P, et al. The effect of electrostatic discharge on the I-V and low frequency noise characterization of Schottky barrier diodes[J]. Acta Physica Sinica, 2012, 61(13): 137203. (in Chinese) doi: 10.7498/aps.61.137203
|
[15] |
HUGGARD P G, AZCONA L, ELLISON B N, et al.. Application of 1.55 µm photomixers as local oscillators & noise sources at millimetre wavelengths[C]. Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, IEEE, 2004: 771-772.
|
[16] |
SONG H J, SHIMIZU N, KUKUTSU N, et al. Microwave photonic noise source from microwave to sub-terahertz wave bands and its applications to noise characterization[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(12): 2989-2997. doi: 10.1109/TMTT.2008.2007325
|
[17] |
ZHAO R K, YAO T M, DUAN X D, et al.. Design of a 0.1~18GHz high-power broadband noise source[C]. 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), IEEE, 2020: 1-3.
|
[18] |
EHSAN N, PIEPMEIER J, SOLLY M, et al.. A robust waveguide millimeter-wave noise source[C]. 2015 European Microwave Conference (EuMC), IEEE, 2015: 853-856.
|
[19] |
GONCALVES J C A, QUEMERAIS T, GLORIA D, et al.. A 130 to 170 GHz integrated noise source based on avalanche silicon Schottky diode in BiCMOS 55 nm for in-situ noise characterization[C]. 2017 International Conference of Microelectronic Test Structures (ICMTS), IEEE, 2017: 1-3.
|
[20] |
GONÇALVES J C A, GHANEM H, BOUVOT S, et al. Millimeter-wave noise source development on SiGe BiCMOS 55-nm technology for applications up to 260 GHz[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(9): 3732-3742. doi: 10.1109/TMTT.2019.2926289
|
[21] |
ALIMENTI F, SIMONCINI G, BROZZETTI G, et al. Millimeter-wave avalanche noise sources based on p-i-n diodes in 130 nm SiGe BiCMOS technology: device characterization and CAD modeling[J]. IEEE Access, 2020, 8: 178976-178990. doi: 10.1109/ACCESS.2020.3027384
|
[22] |
COEN C T, FROUNCHI M, LOURENCO N E, et al. A 60-GHz SiGe radiometer calibration switch utilizing a coupled avalanche noise source[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(4): 417-420. doi: 10.1109/LMWC.2020.2975735
|
[23] |
VIDAL B. Broadband photonic microwave noise sources[J]. IEEE Photonics Technology Letters, 2020, 32(10): 592-594. doi: 10.1109/LPT.2020.2986739
|
[24] |
CHAO E F, XIONG B, SUN CH ZH, et al.. Comprehensive design method of MUTC-PD for terahertz applications[C]. 2020 Asia Communications and Photonics Conference(ACP) and International Conference on Information Photonics and Optical Communications (IPOC). IEEE, 2020: 1-3.
|