Citation: | LI Xiang-jun, MA Chan, YAN De-xian, QIU Guo-hua, ZHAO Yang, YANG Ji, GUO Shi-hui. Enhancement of terahertz absorption spectrum based on the angle multiplexing of the dielectric metasurface[J].Chinese Optics, 2022, 15(4): 731-739.doi:10.37188/CO.2021-0197 |
The rapid detection and identification of organic macromolecules can be realized by using the unique fringerprint spectrum of the terahertz band, but the measurement of terahertz absorption spectrum of trace analyte is still challenging. We proposed a detection scheme of enhancement of terahertz absorption spectrum for trace organic analyte based on angle multiplexing of the dielectric metasurface. The substrate and the cross-unit structure of metasurface are both high-resistance silicon which has high-
[1] |
ZHANG X CH, XU J ZH.
Introduction to THz Wave Photonics[M]. Boston: Springer, 2010.
|
[2] |
TONOUCHI M. Cutting-edge terahertz technology[J].
Nature Photonics, 2007, 1(2): 97-105.
doi:10.1038/nphoton.2007.3
|
[3] |
SHEN J X, ZHU ZH J, ZHANG Z CH,
et al. Ultra-broadband terahertz fingerprint spectrum of melatonin with vibrational mode analysis[J].
Spectrochimica Acta Part A:
Molecular and Biomolecular Spectroscopy, 2021, 247: 119141.
doi:10.1016/j.saa.2020.119141
|
[4] |
XU W D, XIE L J, ZHU J F,
et al. Terahertz biosensing with a graphene-metamaterial heterostructure platform[J].
Carbon, 2019, 141: 247-252.
doi:10.1016/j.carbon.2018.09.050
|
[5] |
FEDERICI J F, SCHULKIN B, HUANG F,
et al. THz imaging and sensing for security applications—explosives, weapons and drugs[J].
Semiconductor Science and Technology, 2005, 20(7): S266-S280.
doi:10.1088/0268-1242/20/7/018
|
[6] |
ZHAN H L, ZHAO K, BAO R M,
et al. Monitoring PM
2.5in the atmosphere by using terahertz time-domain spectroscopy[J].
Journal of Infrared,
Millimeter,
and Terahertz Waves, 2016, 37(9): 929-938.
doi:10.1007/s10762-016-0283-8
|
[7] |
SULTANA J, ISLAM M S, AHMED K,
et al. Terahertz detection of alcohol using a photonic crystal fiber sensor[J].
Applied Optics, 2018, 57(10): 2426-2433.
doi:10.1364/AO.57.002426
|
[8] |
YEE C M, SHERWIN M S. High-
Qterahertz microcavities in silicon photonic crystal slabs[J].
Applied Physics Letters, 2009, 94(15): 154104.
doi:10.1063/1.3118579
|
[9] |
WANG Y H, LI X J, LANG T T,
et al. Multiband guided-mode resonance filter in bilayer asymmetric metallic gratings[J].
Optics&
Laser Technology, 2018, 103: 135-141.
|
[10] |
GUPTA M, SRIVASTAVA Y K, MANJAPPA M,
et al. Sensing with toroidal metamaterial[J].
Applied Physics Letters, 2017, 110(12): 121108.
doi:10.1063/1.4978672
|
[11] |
GOMON D, SEDYKH E, RODRÍGUEZ S,
et al. Influence of the geometric parameters of the electrical ring resonator metasurface on the performance of metamaterial absorbers for terahertz applications[J].
Chinese Optics, 2018, 11(1): 47-59.
doi:10.3788/co.20181101.0047
|
[12] |
HAN S, CONG L Q, SRIVASTAVA Y K,
et al. All-dielectric active terahertz photonics driven by bound states in the continuum[J].
Advanced Materials, 2019, 31(37): 1901921.
doi:10.1002/adma.201901921
|
[13] |
ZHOU J Y, YAN SH, LI CH W,
et al. Perfect ultraviolet absorption in graphene using the magnetic resonance of an all-dielectric nanostructure[J].
Optics Express, 2018, 26(14): 18155-18163.
doi:10.1364/OE.26.018155
|
[14] |
LONG ZH W, LIANG Y ZH, FENG L,
et al. Low-cost and high sensitivity glucose sandwich detection using a plasmonic nanodisk metasurface[J].
Nanoscale, 2020, 12(19): 10809-10815.
doi:10.1039/D0NR00288G
|
[15] |
YESILKOY F, ARVELO E R, JAHANI Y,
et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J].
Nature Photonics, 2019, 13(6): 390-396.
doi:10.1038/s41566-019-0394-6
|
[16] |
LIANG Y ZH, CUI W L, LI L X,
et al. Large-scale plasmonic nanodisk structures for a high sensitivity biosensing platform fabricated by transfer nanoprinting[J].
Advanced Optical Materials, 2019, 7(7): 1801269.
doi:10.1002/adom.201801269
|
[17] |
李向军, 候小梅, 程钢, 等. 基于柔性基底动态调焦石墨烯超表面聚焦反射镜的仿真研究[J]. 中国光学,2021,14(4):1019-1028.
doi:10.37188/CO.2020-0171
LI X J, HOU X M, CHENG G,
et al. Simulation on tunable graphene metasurface focusing mirror based on flexible substrate[J].
Chinese Optics, 2021, 14(4): 1019-1028. (in Chinese)
doi:10.37188/CO.2020-0171
|
[18] |
林婧, 李琦, 邱孟, 等. 人工原子间耦合: 超构表面调控电磁波的新自由度[J]. 中国光学,2021,14(4):717-735.
doi:10.37188/CO.2021-0030
LIN J, LI Q, QIU M,
et al. Coupling between Meta-atoms: a new degree of freedom in metasurfaces manipulating electromagnetic waves[J].
Chinese Optics, 2021, 14(4): 717-735. (in Chinese)
doi:10.37188/CO.2021-0030
|
[19] |
LEITIS A, TITTL A, LIU M K,
et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval[J].
Science Advances, 2019, 5(5): eaaw2871.
doi:10.1126/sciadv.aaw2871
|
[20] |
TITTL A, LEITIS A, LIU M K,
et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J].
Science, 2018, 360(6393): 1105-1109.
doi:10.1126/science.aas9768
|
[21] |
ZHONG Y J, DU L H, LIU Q,
et al. Ultrasensitive specific sensor based on all-dielectric metasurfaces in the terahertz range[J].
RSC Advances, 2020, 10(55): 33018-33025.
doi:10.1039/D0RA06463G
|
[22] |
XIE Y N, LIU X Y, LI F J,
et al. Ultra-wideband enhancement on mid-infrared fingerprint sensing for 2D materials and analytes of monolayers by a metagrating[J].
Nanophotonics, 2020, 9(9): 2927-2935.
doi:10.1515/nanoph-2020-0180
|
[23] |
ZHU J F, JIANG SH, XIE Y N,
et al. Enhancing terahertz molecular fingerprint detection by a dielectric metagrating[J].
Optics Letters, 2020, 45(8): 2335-2338.
doi:10.1364/OL.389045
|
[24] |
RYBIN M V, KOSHELEV K L, SADRIEVA Z F,
et al. High-
Qsupercavity modes in subwavelength dielectric resonators[J].
Physical Review Letters, 2017, 119(24): 243901.
doi:10.1103/PhysRevLett.119.243901
|
[25] |
SHI X M, HAN ZH H. Enhanced terahertz fingerprint detection with ultrahigh sensitivity using the cavity defect modes[J].
Scientific Reports, 2017, 7(1): 13147.
doi:10.1038/s41598-017-13612-9
|