Volume 15Issue 4
Jul. 2022
Turn off MathJax
Article Contents
LI Xiang-jun, MA Chan, YAN De-xian, QIU Guo-hua, ZHAO Yang, YANG Ji, GUO Shi-hui. Enhancement of terahertz absorption spectrum based on the angle multiplexing of the dielectric metasurface[J]. Chinese Optics, 2022, 15(4): 731-739. doi: 10.37188/CO.2021-0197
Citation: LI Xiang-jun, MA Chan, YAN De-xian, QIU Guo-hua, ZHAO Yang, YANG Ji, GUO Shi-hui. Enhancement of terahertz absorption spectrum based on the angle multiplexing of the dielectric metasurface[J].Chinese Optics, 2022, 15(4): 731-739.doi:10.37188/CO.2021-0197

Enhancement of terahertz absorption spectrum based on the angle multiplexing of the dielectric metasurface

doi:10.37188/CO.2021-0197
Funds:Supported by National Key R&D Program of China (No. 2021YFF0600300); National Natural Science Foundation of China (No. 62001444, No. 62175223); Natural Science Foundation of Zhejiang Province (No. LQ20F010009); Basic Public Welfare Research Project of Zhejiang Province (No. LGF19F010003); Wenzhou City Major Scientific and Technological Innovation Projects (No. ZG2021037).
More Information
  • The rapid detection and identification of organic macromolecules can be realized by using the unique fringerprint spectrum of the terahertz band, but the measurement of terahertz absorption spectrum of trace analyte is still challenging. We proposed a detection scheme of enhancement of terahertz absorption spectrum for trace organic analyte based on angle multiplexing of the dielectric metasurface. The substrate and the cross-unit structure of metasurface are both high-resistance silicon which has high- Q resonances. The resonance frequency of the metasurface under terahertz incident with different angles can cover 0.50−0.57 THz. When a lactose film with the thickness of 0.5−2.5 μm as analyte is placed on the metasurface, the amplitude of the resonance peak corresponding to each incident angle changes greatly with the absorption spectrum of the analyte. The enhanced absorption spectrum built by the resonance frequencies envelope is 82.59 times larger than that without the cross-unit structure. The simulation results show that the metasurface has great potential to enhance the terahertz absorption spectrum through angle multiplexing, and it can be used to detect trace organic substances with different characteristic peaks after optimized design.

  • loading
  • [1]
    ZHANG X CH, XU J ZH. Introduction to THz Wave Photonics[M]. Boston: Springer, 2010.
    [2]
    TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. doi:10.1038/nphoton.2007.3
    [3]
    SHEN J X, ZHU ZH J, ZHANG Z CH, et al. Ultra-broadband terahertz fingerprint spectrum of melatonin with vibrational mode analysis[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 247: 119141. doi:10.1016/j.saa.2020.119141
    [4]
    XU W D, XIE L J, ZHU J F, et al. Terahertz biosensing with a graphene-metamaterial heterostructure platform[J]. Carbon, 2019, 141: 247-252. doi:10.1016/j.carbon.2018.09.050
    [5]
    FEDERICI J F, SCHULKIN B, HUANG F, et al. THz imaging and sensing for security applications—explosives, weapons and drugs[J]. Semiconductor Science and Technology, 2005, 20(7): S266-S280. doi:10.1088/0268-1242/20/7/018
    [6]
    ZHAN H L, ZHAO K, BAO R M, et al. Monitoring PM 2.5in the atmosphere by using terahertz time-domain spectroscopy[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37(9): 929-938. doi:10.1007/s10762-016-0283-8
    [7]
    SULTANA J, ISLAM M S, AHMED K, et al. Terahertz detection of alcohol using a photonic crystal fiber sensor[J]. Applied Optics, 2018, 57(10): 2426-2433. doi:10.1364/AO.57.002426
    [8]
    YEE C M, SHERWIN M S. High- Qterahertz microcavities in silicon photonic crystal slabs[J]. Applied Physics Letters, 2009, 94(15): 154104. doi:10.1063/1.3118579
    [9]
    WANG Y H, LI X J, LANG T T, et al. Multiband guided-mode resonance filter in bilayer asymmetric metallic gratings[J]. Optics& Laser Technology, 2018, 103: 135-141.
    [10]
    GUPTA M, SRIVASTAVA Y K, MANJAPPA M, et al. Sensing with toroidal metamaterial[J]. Applied Physics Letters, 2017, 110(12): 121108. doi:10.1063/1.4978672
    [11]
    GOMON D, SEDYKH E, RODRÍGUEZ S, et al. Influence of the geometric parameters of the electrical ring resonator metasurface on the performance of metamaterial absorbers for terahertz applications[J]. Chinese Optics, 2018, 11(1): 47-59. doi:10.3788/co.20181101.0047
    [12]
    HAN S, CONG L Q, SRIVASTAVA Y K, et al. All-dielectric active terahertz photonics driven by bound states in the continuum[J]. Advanced Materials, 2019, 31(37): 1901921. doi:10.1002/adma.201901921
    [13]
    ZHOU J Y, YAN SH, LI CH W, et al. Perfect ultraviolet absorption in graphene using the magnetic resonance of an all-dielectric nanostructure[J]. Optics Express, 2018, 26(14): 18155-18163. doi:10.1364/OE.26.018155
    [14]
    LONG ZH W, LIANG Y ZH, FENG L, et al. Low-cost and high sensitivity glucose sandwich detection using a plasmonic nanodisk metasurface[J]. Nanoscale, 2020, 12(19): 10809-10815. doi:10.1039/D0NR00288G
    [15]
    YESILKOY F, ARVELO E R, JAHANI Y, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nature Photonics, 2019, 13(6): 390-396. doi:10.1038/s41566-019-0394-6
    [16]
    LIANG Y ZH, CUI W L, LI L X, et al. Large-scale plasmonic nanodisk structures for a high sensitivity biosensing platform fabricated by transfer nanoprinting[J]. Advanced Optical Materials, 2019, 7(7): 1801269. doi:10.1002/adom.201801269
    [17]
    李向军, 候小梅, 程钢, 等. 基于柔性基底动态调焦石墨烯超表面聚焦反射镜的仿真研究[J]. 中国光学,2021,14(4):1019-1028. doi:10.37188/CO.2020-0171

    LI X J, HOU X M, CHENG G, et al. Simulation on tunable graphene metasurface focusing mirror based on flexible substrate[J]. Chinese Optics, 2021, 14(4): 1019-1028. (in Chinese) doi:10.37188/CO.2020-0171
    [18]
    林婧, 李琦, 邱孟, 等. 人工原子间耦合: 超构表面调控电磁波的新自由度[J]. 中国光学,2021,14(4):717-735. doi:10.37188/CO.2021-0030

    LIN J, LI Q, QIU M, et al. Coupling between Meta-atoms: a new degree of freedom in metasurfaces manipulating electromagnetic waves[J]. Chinese Optics, 2021, 14(4): 717-735. (in Chinese) doi:10.37188/CO.2021-0030
    [19]
    LEITIS A, TITTL A, LIU M K, et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval[J]. Science Advances, 2019, 5(5): eaaw2871. doi:10.1126/sciadv.aaw2871
    [20]
    TITTL A, LEITIS A, LIU M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393): 1105-1109. doi:10.1126/science.aas9768
    [21]
    ZHONG Y J, DU L H, LIU Q, et al. Ultrasensitive specific sensor based on all-dielectric metasurfaces in the terahertz range[J]. RSC Advances, 2020, 10(55): 33018-33025. doi:10.1039/D0RA06463G
    [22]
    XIE Y N, LIU X Y, LI F J, et al. Ultra-wideband enhancement on mid-infrared fingerprint sensing for 2D materials and analytes of monolayers by a metagrating[J]. Nanophotonics, 2020, 9(9): 2927-2935. doi:10.1515/nanoph-2020-0180
    [23]
    ZHU J F, JIANG SH, XIE Y N, et al. Enhancing terahertz molecular fingerprint detection by a dielectric metagrating[J]. Optics Letters, 2020, 45(8): 2335-2338. doi:10.1364/OL.389045
    [24]
    RYBIN M V, KOSHELEV K L, SADRIEVA Z F, et al. High- Qsupercavity modes in subwavelength dielectric resonators[J]. Physical Review Letters, 2017, 119(24): 243901. doi:10.1103/PhysRevLett.119.243901
    [25]
    SHI X M, HAN ZH H. Enhanced terahertz fingerprint detection with ultrahigh sensitivity using the cavity defect modes[J]. Scientific Reports, 2017, 7(1): 13147. doi:10.1038/s41598-017-13612-9
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)/Tables(1)

    Article views(818) PDF downloads(143) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map