Volume 15Issue 2
Mar. 2022
Turn off MathJax
Article Contents
WU Zhe, LU Dong-xiao, LI Jin-hua. Photothermal properties of gold nanostars therapeutic agent and its application in photothermal therapy and optical coherence tomography[J]. Chinese Optics, 2022, 15(2): 233-241. doi: 10.37188/CO.2021-0205
Citation: WU Zhe, LU Dong-xiao, LI Jin-hua. Photothermal properties of gold nanostars therapeutic agent and its application in photothermal therapy and optical coherence tomography[J].Chinese Optics, 2022, 15(2): 233-241.doi:10.37188/CO.2021-0205

Photothermal properties of gold nanostars therapeutic agent and its application in photothermal therapy and optical coherence tomography

doi:10.37188/CO.2021-0205
Funds:Supported by Developing Project of Science and Technology of Jilin Province (No. 20210101155JC); National Natural Science Foundation of China (No. 62174015); the “111” Project of China (No. D17017); Project of Education Department of Jilin Province(No. JJKH20200730KJ, No. JJKH20210798KJ)
More Information
  • Corresponding author:ludongxiao@cust.edu.cn;lijh@cust.edu.cn
  • Received Date:25 Nov 2021
  • Accepted Date:12 Feb 2022
  • Rev Recd Date:16 Dec 2021
  • Available Online:15 Feb 2022
  • Publish Date:21 Mar 2022
  • In order to develop an excellent Au nanostars therapeutic agent for photothermal therapy and optical coherence tomography, we research the preparation of gold nanostars, photothermal properties, photothermal therapy and applications in optical coherence tomography. By adopting the tip structure to enhance the local surface plasmon resonance properties of gold nanomaterials, the multi-branched Au nanostars is prepared by seed mediated method. The multi-tip structure enables the Au nanostars to have obvious photothermal effect, then its effect as a therapeutic agent for photothermal therapy and contrast agent for optical coherence tomography is explored. The experimental results showed that compared with Au nanoparticles, the multi-branched Au nanostars had a higher photothermal conversion efficiency of 42%, and has good biocompatibility. At the concentration of 100 μg/mL, the survival rate of human breast cancer cells is 82%. Human breast cancer cells are effectively killed by laser irradiation at the concentration of 100 μg/mL, and the survival rate is significantly reduced to 37%. At the same time, Au nanostars also has better optical coherence tomography imaging effect, significantly improving the signal intensity and imaging depth. Au nanostars is a promising multifunctional therapeutic agent with both efficient photothermal therapy and excellent optical coherence tomography imaging capability.

  • loading
  • [1]
    KELKAR S S, REINEKE T M. Theranostics: combining imaging and therapy[J]. Bioconjugate Chemistry, 2011, 22(10): 1879-1903. doi:10.1021/bc200151q
    [2]
    周莹, 刘赛男, 蔡砺寒, 等. 铁掺杂的聚2-硝基-1, 4-苯二胺纳米球的制备及在光热/光动力/化学动力学肿瘤治疗中的应用[J]. 应用化学,2021,38(2):181-187.

    ZHOU Y, LIU S N, CAI L H, et al. Ion-doped poly(2-nitro-1, 4-phenylenediamine) nanospheres for synergistic photo- and chemo-dynamic therapy[J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 181-187. (in Chinese)
    [3]
    KUMAR A, KIM S, NAM J M. Plasmonically engineered nanoprobes for biomedical applications[J]. Journal of the American Chemical Society, 2016, 138(44): 14509-14525. doi:10.1021/jacs.6b09451
    [4]
    ZOU Q L, ABBAS M, ZHAO L Y, et al. Biological photothermal nanodots based on self-assembly of peptide-porphyrin conjugates for antitumor therapy[J]. Journal of the American Chemical Society, 2017, 139(5): 1921-1927. doi:10.1021/jacs.6b11382
    [5]
    JIANG Y T, SUN M X, OUYANG N, et al. Synergistic chemo-thermal therapy of cancer by DNA-templated silver nanoclusters and polydopamine nanoparticles[J]. ACS Applied Materials& Interfaces, 2021, 13(18): 21653-21660.
    [6]
    RAEESI V, CHOU L Y T, CHAN W C W. Tuning the drug loading and release of DNA-assembled gold-nanorod superstructures[J]. Advanced Materials, 2016, 28(38): 8511-8518. doi:10.1002/adma.201600773
    [7]
    张雅静, 王晓辉, 徐亚娟, 等. 石墨烯纳米载药体系的制备及对肿瘤细胞的杀伤作用[J]. 应用化学,2021,38(6):693-703.

    ZHANG Y J, WANG X H, XU Y J, et al. Preparation of graphene Nano-drug carrier system and its killing effect on tumor cells[J]. Chinese Journal of Applied Chemistry, 2021, 38(6): 693-703. (in Chinese)
    [8]
    TIAN Q W, TANG M H, SUN Y G, et al. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells[J]. Advanced Materials, 2011, 23(31): 3542-3547. doi:10.1002/adma.201101295
    [9]
    CHOU S S, KAEHR B, KIM J, et al. Chemically exfoliated MoS 2as near-infrared photothermal agents[J]. Angewandte Chemie International Edition, 2013, 52(15): 4160-4164. doi:10.1002/anie.201209229
    [10]
    张萌, 陈东圳, 任研伟, 等. 纳米岛状银膜@金纳米针尖表面增强拉曼散射传感界面及多巴胺分子的传感分析[J]. 应用化学,2021,38(7):866-873.

    ZHANG M, CHEN D ZH, REN Y W, et al. Sensing interface based on nanoislandlike sliver film@gold nanotip for surface enhanced Raman scattering analysis of dopamine[J]. Chinese Journal of Applied Chemistry, 2021, 38(7): 866-873. (in Chinese)
    [11]
    DE ABERASTURI D J, SERRANO-MONTES A B, LIZ-MARZÁN L M. Modern applications of plasmonic nanoparticles: from energy to health[J]. Advanced Optical Materials, 2015, 3(5): 602-617. doi:10.1002/adom.201500053
    [12]
    PANG B, ZHAO Y F, LUEHMANN H, et al. 64Cu-doped PdCu@Au tripods: a multifunctional nanomaterial for positron emission tomography and image-guided photothermal cancer treatment[J]. ACS Nano, 2016, 10(3): 3121-3131. doi:10.1021/acsnano.5b07968
    [13]
    RAYALU S S, JOSE D, MANGRULKAR P A, et al. Photodeposition of AuNPs on metal oxides: study of SPR effect and photocatalytic activity[J]. International Journal of Hydrogen Energy, 2014, 39(8): 3617-3624. doi:10.1016/j.ijhydene.2013.11.120
    [14]
    MA K, LI Y W, WANG ZH G, et al. Core-shell gold nanorod@layered double hydroxide nanomaterial with highly efficient photothermal conversion and its application in antibacterial and tumor therapy[J]. ACS Applied Materials& Interfaces, 2019, 11(33): 29630-29640.
    [15]
    DIAGARADJANE P, SHETTY A, WANG J C, et al. Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy[J]. Nano Letter, 2008, 8(5): 1492-1500. doi:10.1021/nl080496z
    [16]
    CHOI W I, KIM J Y, KANG C, et al. Tumor regression in vivoby photothermal therapy based on gold-nanorod-loaded, functional nanocarriers[J]. ACS Nano, 2011, 5(3): 1995-2003. doi:10.1021/nn103047r
    [17]
    LU W, XIONG CH Y, ZHANG G D, et al. Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres[J]. Clinical Cancer Research, 2009, 15(3): 876-886. doi:10.1158/1078-0432.CCR-08-1480
    [18]
    KIM S H, KIM J H, KANG S W. Nondestructive defect inspection for LCDs using optical coherence tomography[J]. Displays, 2011, 32(5): 325-329. doi:10.1016/j.displa.2011.04.002
    [19]
    陆冬筱, 房文汇, 李玉瑶, 等. 光学相干层析成像技术原理及研究进展[J]. 中国光学,2020,13(5):919-935. doi:10.37188/CO.2020-0037

    LU D X, FANG W H, LI Y Y, et al. Optical coherence tomography: principles and recent developments[J]. Chinese Optics, 2020, 13(5): 919-935. (in Chinese) doi:10.37188/CO.2020-0037
    [20]
    EHLERS J P, GUPTA P K, FARSIU S, et al. Evaluation of contrast agents for enhanced visualization in optical coherence tomography[J]. Investigative Ophthalmology& Visual Science, 2010, 51(12): 6614-6619.
    [21]
    CHEN ZH P, MILNER T E, SRINIVAS S, et al. Noninvasive imaging of in vivoblood flow velocity using optical Doppler tomography[J]. Optics Letters, 1997, 22(14): 1119-1121. doi:10.1364/OL.22.001119
    [22]
    AU K M, LU Z H, MATCHER S J, et al. Polypyrrole nanoparticles: a potential optical coherence tomography contrast agent for cancer imaging[J]. Advanced Materials, 2011, 23(48): 5792-5795. doi:10.1002/adma.201103190
    [23]
    MONDAL I, RAJ S, ROY P, et al. Silver nanoparticles (AgNPs) as a contrast agent for imaging of animal tissue using swept-source optical coherence tomography (SSOCT)[J]. Laser Physics, 2018, 28(1): 015601. doi:10.1088/1555-6611/aa884b
    [24]
    邢雅艳, 史宇哲, 邓世贤, 等. 儿茶素-银纳米复合材料的制备及其应用[J]. 应用化学,2020,37(9):1062-1068. doi:10.11944/j.issn.1000-0518.2020.09.200076

    XING Y Y, SHI Y ZH, DENG SH X, et al. Preparation and application of catechin-silver nanocomposites[J]. Chinese Journal of Applied Chemistry, 2020, 37(9): 1062-1068. (in Chinese) doi:10.11944/j.issn.1000-0518.2020.09.200076
    [25]
    ZHU H SH, LIU CH H, LIU X X, et al. A multi-colorimetric immunosensor for visual detection of ochratoxin A by mimetic enzyme etching of gold nanobipyramids[J]. Microchimica Acta, 2021, 188(3): 62. doi:10.1007/s00604-020-04699-5
    [26]
    JENA B K, RAJ C R. Shape-controlled synthesis of gold nanoprism and nanoperiwinkles with pronounced electrocatalytic activity[J]. The Journal of Physical Chemistry C, 2007, 111(42): 15146-15153. doi:10.1021/jp072363s
    [27]
    YAU O, HÉTU M F, HERR J E, et al. Development of a carotid vulnerable plaque phantom model evaluated by pixel distribution analysis[J]. Ultrasound in Medicine and Biology, 2018, 44(12): 2768-2779. doi:10.1016/j.ultrasmedbio.2018.07.005
    [28]
    曹小卫, 陈帅, 鲍敏, 等. 金纳米星的制备、表面修饰及其在生物医学领域的应用研究[J]. 化学进展,2018,30(9):1380-1391.

    CAO X W, CHEN SH, BAO M, et al. Synthesis and surface modifications of Au nanostars and their applications in biomedical fields[J]. Progress in Chemistry, 2018, 30(9): 1380-1391. (in Chinese)
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views(689) PDF downloads(109) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map