Citation: | WANG Qian, CAI Wei-wei, TAO Bo. Laser intensity distribution measurement method based on tomographic imaging[J]. Chinese Optics, 2023, 16(4): 743-752. doi: 10.37188/CO.2022-0016 |
In order to accurately measure the laser intensity distribution, we propose a method based on tomographic imaging. Firstly, numerical studies were performed to validate the correctness of the imaging model and convergence of the reconstruction algorithm. Reconstruction errors were less than or equal to 7.02% with different laser intensity distribution phantoms employed and less than 8.5% with the addition of different random noise levels under 10%. Additionally, a demonstration experiment was performed with the employment of a customized fiber bundle to realize the measurement from seven views. Seven views are distributed along a semi-circle plane which is perpendicular to the propagation direction of the laser beam. The distance from the laser beam to each view is nearly 160 mm and the angle coverage range of the seven views is about 150°. Laser-induced fluorescence obtained after the laser passed through a rhodamine-ethanol solution was collected by the tomographic imaging system. Then, the laser intensity distribution was obtained through absorption-corrected three-dimensional (3D) reconstruction. The correlation of the projection and re-projection of the one view was used to quantitatively access the accuracy after the other six views were adopted in the reconstruction. The results show the feasibility of the method with a correlation coefficient of 0.9802. It can be predicted that the 3D laser intensity measurement scheme proposed in this work has a broad prospect in the field of laser applications.
[1] |
王家乐. 基于光斑图像的金宝搏188软件怎么用
能量密度分布测量技术[D]. 长春: 长春理工大学, 2013
WANG J L. Measurement technology of energy density distribution based on spot image[D]. Changchun: Changchun University of Science and Technology, 2013. (in Chinese)
|
[2] |
王艳茹, 王建忠, 冉铮惠, 等. 高能金宝搏188软件怎么用
光束质量β因子的影响因素分析[J]. 中国光学,2021,14(2):353-360. doi: 10.37188/CO.2020-0137
WANG Y R, WANG J ZH, RAN ZH H, et al. Analysis of effects on the beam quality β factor of high power laser[J]. Chinese Optics, 2021, 14(2): 353-360. (in Chinese) doi: 10.37188/CO.2020-0137
|
[3] |
郜魏柯, 杜小平, 王阳, 等. 金宝搏188软件怎么用
散斑目标探测技术综述[J]. 中国光学,2020,13(6):1182-1193. doi: 10.37188/CO.2020-0049
GAO W K, DU X P, WANG Y, et al. Review of laser speckle target detection technology[J]. Chinese Optics, 2020, 13(6): 1182-1193. (in Chinese) doi: 10.37188/CO.2020-0049
|
[4] |
文康, 李和章, 马壮, 等. 光斑尺寸对连续金宝搏188软件怎么用
辐照铝合金温度响应影响研究[J]. 中国光学,2020,13(5):1023-1031. doi: 10.37188/CO.2020-0022
WEN K, LI H ZH, MA ZH, et al. Effects of spot size on the temperature response of an aluminum alloy irradiated by a continuous laser[J]. Chinese Optics, 2020, 13(5): 1023-1031. (in Chinese) doi: 10.37188/CO.2020-0022
|
[5] |
庞淼, 袁学文, 高学燕, 等. 散射成像法测量金宝搏188软件怎么用
强度分布中的光斑畸变校正[J]. 光学学报,2010(2):5. doi: CNKI:SUN:GXXB.0.2010-02-029
PANG M, YUAN X W, GAO X Y, et al. Spot distortion calibration in measurement of laser intensity distribution based on imaging by scattering[J]. Chinese Physics B, 2010(2): 5. (in Chinese) doi: CNKI:SUN:GXXB.0.2010-02-029
|
[6] |
王飞, 徐作冬, 戢运峰, 等. 采用扫描式漫反射成像法的金宝搏188软件怎么用
强度分布测量装置[J]. 红外与金宝搏188软件怎么用
工程,2014,43(7):4. doi: 10.3969/j.issn.1007-2276.2014.07.033
WANG F, XU Z D, JI Y F, et al. Measurement system for laser intensity distribution based on scanning diffuse reflection imaging[J]. Infrared and Laser Engineering, 2014, 43(7): 4. (in Chinese) doi: 10.3969/j.issn.1007-2276.2014.07.033
|
[7] |
ZHU ZH, WANG Y ZH, YI Y X, et al. Novel direct-detection scheme for measuring energy distribution of laser spots in outfield[J]. Opto-Electronic Engineering, 2005, 32(11): 49-53.
|
[8] |
CHO K Y, SATIJA A, POURPOINT T L, et al. High-repetition-rate three-dimensional OH imaging using scanned planar laser-induced fluorescence system for multiphase combustion[J]. Applied Optics, 2014, 53(3): 316-326. doi: 10.1364/AO.53.000316
|
[9] |
NYGREN J, HULT J, RICHTER M, et al. Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine[J]. Proceedings of the Combustion Institute, 2002, 29(1): 679-685. doi: 10.1016/S1540-7489(02)80087-6
|
[10] |
陈琦, 徐熙平, 姜肇国, 等. 基于光场相机的深度面光场计算重构[J]. 光学 精密工程,2018,26(3):708-714. doi: 10.3788/OPE.20182603.0708
CHEN Q, XU X P, JIANG ZH G, et al. Light field computational reconstruction from focal planes based on light field camera[J]. Optics and Precision Engineering, 2018, 26(3): 708-714. (in Chinese) doi: 10.3788/OPE.20182603.0708
|
[11] |
SUN J, XU CH L, ZHANG B, et al. Three-dimensional temperature field measurement of flame using a single light field camera[J]. Optics Express, 2016, 24(2): 1118-1132. doi: 10.1364/OE.24.001118
|
[12] |
LILLO P M, GREENE M L, SICK V. Plenoptic single-shot 3D imaging of in-cylinder fuel spray geometry[J]. Zeitschrift für Physikalische Chemie, 2015, 229(4): 549-560.
|
[13] |
SAMARASINGHE J, PELUSO S, SZEDLMAYER M, et al. Three-dimensional chemiluminescence imaging of unforced and forced swirl-stabilized flames in a lean premixed multi-nozzle can combustor[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(10): 101503. doi: 10.1115/1.4024987
|
[14] |
CAI W W, LI X S, MA L. Practical aspects of implementing three-dimensional tomography inversion for volumetric flame imaging[J]. Applied Optics, 2013, 52(33): 8106-8116. doi: 10.1364/AO.52.008106
|
[15] |
CAI W W, LI X S, LI F, et al. Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence[J]. Optics Express, 2013, 21(6): 7050-7064. doi: 10.1364/OE.21.007050
|
[16] |
SHI SH X, WANG J H, DING J F, et al. Parametric study on light field volumetric particle image velocimetry[J]. Flow Measurement and Instrumentation, 2016, 49: 70-88. doi: 10.1016/j.flowmeasinst.2016.05.006
|
[17] |
ZHOU G X, LI F, WANG K L, et al. Research on a quantitative method for three-dimensional computed tomography of chemiluminescence[J]. Applied Optics, 2020, 59(17): 5310-5318. doi: 10.1364/AO.393225
|
[18] |
WINDLE C I, ANDERSON J, BOYD J, et al. In situ imaging of 4D fire events in a ground vehicle testbed using customized fiber-based endoscopes[J]. Combustion and Flame, 2021, 224: 225-232. doi: 10.1016/j.combustflame.2020.11.022
|
[19] |
WANG Q, YU T, LIU H C, et al. Optimization of camera arrangement for volumetric tomography with constrained optical access[J]. Journal of the Optical Society of America B, 2020, 37(4): 1231-1239. doi: 10.1364/JOSAB.385291
|
[20] |
LIU H C, PAOLILLO G, ASTARITA T, et al. Computed tomography of chemiluminescence for the measurements of flames confined within a cylindrical glass[J]. Optics Letters, 2019, 44(19): 4793-4796. doi: 10.1364/OL.44.004793
|
[21] |
ZHANG ZH Y. Flexible camera calibration by viewing a plane from unknown orientations[C]. Proceedings of the Seventh IEEE International Conference on Computer Vision, IEEE, 1999: 666-673.
|
[22] |
YU T, LIU H C, CAI W W. On the quantification of spatial resolution for three-dimensional computed tomography of chemiluminescence[J]. Optics Express, 2017, 25(20): 24093-24108. doi: 10.1364/OE.25.024093
|
[23] |
YU T, TIAN B, CAI W W. Development of a beam optimization method for absorption-based tomography[J]. Optics Express, 2017, 25(6): 5982-5999. doi: 10.1364/OE.25.005982
|
[24] |
WEI CH Y, PINEDA D I, PAXTON L, et al. Mid-infrared laser absorption tomography for quantitative 2D thermochemistry measurements in premixed jet flames[J]. Applied Physics B, 2018, 124(6): 123. doi: 10.1007/s00340-018-6984-z
|
[25] |
YU T, LI Z M, RUAN C, et al. Development of an absorption-corrected method for 3D computed tomography of chemiluminescence[J]. Measurement Science and Technology, 2019, 30(4): 045403. doi: 10.1088/1361-6501/ab01c1
|
[26] |
LIU H C, SUN B, CAI W W. kHz-rate volumetric flame imaging using a single camera[J]. Optics Communications, 2019, 437: 33-43. doi: 10.1016/j.optcom.2018.12.036
|
[27] |
LIU H C, YU T, ZHANG M, et al. Demonstration of 3D computed tomography of chemiluminescence with a restricted field of view[J]. Applied Optics, 2017, 56(25): 7107-7115. doi: 10.1364/AO.56.007107
|