Citation: | HUANG Zheng-zhong, CAO Liang-cai. Multi-channel multiplexing digital holographic imaging for high throughput[J].Chinese Optics, 2022, 15(6): 1182-1193.doi:10.37188/CO.2022-0070 |
Optical imaging has become the dominant method for characterizing information in biological systems. The rapid, non-destructive and comprehensive characterization of biological samples in recent years has placed high demands on the resolvable volume of imaging systems. Digital holography records an entire complex wavefront including both the amplitude and phase of the light field by interference imaging. Due to fast, non-destructive, and 3D imaging abilities, digital holography has been used in numerous applications such as digital pathology, label-free observation and real-time monitoring of in vitro cells. First, this paper introduces the main ways to achieve high-throughput imaging, and analyzes the advantages of digital holography and the evolution of spatial bandwidth. Secondly, a theoretical framework for high-throughput multi-channel multiplexing digital holography based on the Hilbert transform is presented. Then, an extended field of view digital holographic microscope is introduced based on this theoretical framework. Experimental results indicate that the system achieves 8 times the space-bandwidth product higher than that of conventional off-axis holographic microscopes without sacrificing spatial and temporal resolution. This high-throughput digital holographic multiplexing technology can make full use of the redundant spatial bandwidth of single intensity image, which verifies the feasibility of high-throughput multi-channel multiplexing digital holography.
[1] |
GABOR D. A new microscopic principle[J].
Nature, 1948, 161(4098): 777-778.
doi:10.1038/161777a0
|
[2] |
HOEBE R A, VAN OVEN C H, GADELLA T W J JR,
et al. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging[J].
Nature Biotechnology, 2007, 25(2): 249-253.
doi:10.1038/nbt1278
|
[3] |
GORDON M P, HA T, SELVIN P R. Single-molecule high-resolution imaging with photobleaching[J].
Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(17): 6462-6465.
doi:10.1073/pnas.0401638101
|
[4] |
ZERNIKE F. Phase contrast, a new method for the microscopic observation of transparent objects[J].
Physica, 1942, 9(7): 686-698.
doi:10.1016/S0031-8914(42)80035-X
|
[5] |
NOMARSKI G M. Differential microinterferometer with polarized waves[J].
Journal de Physique et le Radium, 1955, 16: 9s-13s.
|
[6] |
ZUO J M, VARTANYANTS I, GAO M,
et al. Atomic resolution imaging of a carbon nanotube from diffraction intensities[J].
Science, 2003, 300(5624): 1419-1421.
doi:10.1126/science.1083887
|
[7] |
ZHANG F C, CHEN B, MORRISON G R,
et al. Phase retrieval by coherent modulation imaging[J].
Nature Communications, 2016, 7(1): 13367.
doi:10.1038/ncomms13367
|
[8] |
ZUO CH, LI J J, SUN J S,
et al. Transport of intensity equation: a tutorial[J].
Optics and Lasers in Engineering, 2020, 135: 106187.
doi:10.1016/j.optlaseng.2020.106187
|
[9] |
ZUO CH, CHEN Q, ASUNDI A. Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform[J].
Optics Express, 2014, 22(8): 9220-9244.
doi:10.1364/OE.22.009220
|
[10] |
WALLER L, TIAN L, BARBASTATHIS G. Transport of Intensity phase-amplitude imaging with higher order intensity derivatives[J].
Optics Express, 2010, 18(12): 12552-12561.
doi:10.1364/OE.18.012552
|
[11] |
FAULKNER H M L, RODENBURG J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm[J].
Physical Review Letters, 2004, 93(2): 023903.
doi:10.1103/PhysRevLett.93.023903
|
[12] |
RODENBURG J M, FAULKNER H M L. A phase retrieval algorithm for shifting illumination[J].
Applied Physics Letters, 2004, 85(20): 4795-4797.
doi:10.1063/1.1823034
|
[13] |
ZHENG G A, HORSTMEYER R, YANG C. Wide-field, high-resolution Fourier ptychographic microscopy[J].
Nature Photonics, 2013, 7(9): 739-745.
doi:10.1038/nphoton.2013.187
|
[14] |
WU J CH, YANG F, CAO L C. Resolution enhancement of long-range imaging with sparse apertures[J].
Optics and Lasers in Engineering, 2022, 155: 107068.
doi:10.1016/j.optlaseng.2022.107068
|
[15] |
孙佳嵩, 张玉珍, 陈钱, 等. 傅里叶叠层显微成像技术: 理论、发展和应用[J]. 光学学报,2016,36(10):1011005.
doi:10.3788/AOS201636.1011005
SUN J S, ZHANG Y ZH, CHEN Q,
et al. Fourier ptychographic microscopy: theory, advances, and applications[J].
Acta Optica Sinica, 2016, 36(10): 1011005. (in Chinese)
doi:10.3788/AOS201636.1011005
|
[16] |
潘安, 张艳, 赵天宇, 等. 基于叠层衍射成像术的量化相位显微成像[J]. 与光电子学进展,2017,54(4):040001.
PAN A, ZHANG Y, ZHAO T Y,
et al. Quantitative phase microscopy imaging based on ptychography[J].
Laser&
Optoelectronics Progress, 2017, 54(4): 040001. (in Chinese)
|
[17] |
张韶辉, 周国城, 崔柏岐, 等. 傅里叶叠层显微成像模型、算法及系统研究综述[J]. 与光电子学进展,2021,58(14):1400001.
ZHANG SH H, ZHOU G CH, CUI B Q,
et al. Review of fourier ptychographic microscopy: models, algorithms, and systems[J].
Laser&
Optoelectronics Progress, 2021, 58(14): 1400001. (in Chinese)
|
[18] |
BAEK Y S, PARK Y K. Intensity-based holographic imaging via space-domain Kramers–Kronig relations[J].
Nature Photonics, 2021, 15(5): 354-360.
doi:10.1038/s41566-021-00760-8
|
[19] |
SHEN CH, LIANG M SH, PAN A,
et al. Non-iterative complex wave-field reconstruction based on Kramers–Kronig relations[J].
Photonics Research, 2021, 9(6): 1003-1012.
doi:10.1364/PRJ.419886
|
[20] |
LEE C, BAEK Y, HUGONNET H,
et al. Single-shot wide-field topography measurement using spectrally multiplexed reflection intensity holography via space-domain Kramers–Kronig relations[J].
Optics Letters, 2022, 47(5): 1025-1028.
doi:10.1364/OL.446159
|
[21] |
PARK Y K, DEPEURSINGE C, POPESCU G. Quantitative phase imaging in biomedicine[J].
Nature Photonics, 2018, 12(10): 578-589.
doi:10.1038/s41566-018-0253-x
|
[22] |
YAMAGUCHI I, ZHANG T. Phase-shifting digital holography[J].
Optics Letters, 1997, 22(16): 1268-1270.
doi:10.1364/OL.22.001268
|
[23] |
AWATSUJI Y, SASADA M, KUBOTA T. Parallel quasi-phase-shifting digital holography[J].
Applied Physics Letters, 2004, 85(6): 1069-1071.
doi:10.1063/1.1777796
|
[24] |
AWATSUJI Y, FUJII A, KUBOTA T,
et al. Parallel three-step phase-shifting digital holography[J].
Applied Optics, 2006, 45(13): 2995-3002.
doi:10.1364/AO.45.002995
|
[25] |
AWATSUJI Y, TAHARA T, KANEKO A,
et al. Parallel two-step phase-shifting digital holography[J].
Applied Optics, 2008, 47(19): D183-D189.
doi:10.1364/AO.47.00D183
|
[26] |
LOHMANN A W. Reconstruction of vectorial wavefronts[J].
Applied Optics, 1965, 4(12): 1667-1668.
doi:10.1364/AO.4.001667
|
[27] |
王云新, 王大勇, 杨怡姝, 等. 数字全息技术在生物医学成像和分析中的应用[J]. 中国 ,2014,41(2):0209002.
doi:10.3788/CJL201441.0209002
WANG Y X, WANG D Y, YANG Y SH,
et al. Application and analysis in the biomedicine field using digital holographic technology[J].
Chinese Journal of Lasers, 2014, 41(2): 0209002. (in Chinese)
doi:10.3788/CJL201441.0209002
|
[28] |
HUANG ZH ZH, MEMMOLO P, FERRARO P,
et al. Dual-plane coupled phase retrieval for non-prior holographic imaging[J].
PhotoniX, 2022, 3(1): 3.
doi:10.1186/s43074-021-00046-w
|
[29] |
PARK J, BRADY D, ZHENG G A,
et al. Review of bio-optical imaging systems with a high space-bandwidth product[J].
Advanced Photonics, 2021, 3(4): 044001.
|
[30] |
BIAN Z CH, GUO CH F, JIANG SH W,
et al. Autofocusing technologies for whole slide imaging and automated microscopy[J].
Journal of Biophotonics, 2020, 13(12): e202000227.
|
[31] |
AL-JANABI S, HUISMAN A, VAN DIEST P J. Digital pathology: current status and future perspectives[J].
Histopathology, 2012, 61(1): 1-9.
doi:10.1111/j.1365-2559.2011.03814.x
|
[32] |
FARAHANI N, PARWANI A, PANTANOWITZ L. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives[J].
Pathology and Laboratory Medicine International, 2015, 7: 23-33.
|
[33] |
BARISONI L, LAFATA K J, HEWITT S M,
et al. Digital pathology and computational image analysis in nephropathology[J].
Nature Reviews Nephrology, 2020, 16(11): 669-685.
doi:10.1038/s41581-020-0321-6
|
[34] |
HUGONNET H, KIM Y W, LEE M,
et al. Multiscale label-free volumetric holographic histopathology of thick-tissue slides with subcellular resolution[J].
Advanced Photonics, 2021, 3(2): 026004.
|
[35] |
BRADY D J, GEHM M E, STACK R A,
et al. Multiscale gigapixel photography[J].
Nature, 2012, 486(7403): 386-389.
doi:10.1038/nature11150
|
[36] |
BRADY D J, HAGEN N. Multiscale lens design[J].
Optics Express, 2009, 17(13): 10659-10674.
doi:10.1364/OE.17.010659
|
[37] |
GOLISH D R, VERA E M, KELLY K J,
et al. Development of a scalable image formation pipeline for multiscale gigapixel photography[J].
Optics Express, 2012, 20(20): 22048-22062.
doi:10.1364/OE.20.022048
|
[38] |
FAN J T, SUO J L, WU J M,
et al. Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution[J].
Nature Photonics, 2019, 13(11): 809-816.
doi:10.1038/s41566-019-0474-7
|
[39] |
OU X Z, HORSTMEYER R, YANG C,
et al. Quantitative phase imaging via Fourier ptychographic microscopy[J].
Optics Letters, 2013, 38(22): 4845-4848.
doi:10.1364/OL.38.004845
|
[40] |
OU X Z, HORSTMEYER R, ZHENG G A,
et al. High numerical aperture Fourier ptychography: principle, implementation and characterization[J].
Optics Express, 2015, 23(3): 3472-3491.
doi:10.1364/OE.23.003472
|
[41] |
LUO W, GREENBAUM A, ZHANG Y B,
et al. Synthetic aperture-based on-chip microscopy[J].
Light:
Science&
Applications, 2015, 4(3): e261.
|
[42] |
ISIKMAN S O, BISHARA W, MAVANDADI S,
et al. Lens-free optical tomographic microscope with a large imaging volume on a chip[J].
Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(18): 7296-7301.
doi:10.1073/pnas.1015638108
|
[43] |
MICÓ V, ZHENG J J, GARCIA J,
et al. Resolution enhancement in quantitative phase microscopy[J].
Advances in Optics and Photonics, 2019, 11(1): 135-214.
doi:10.1364/AOP.11.000135
|
[44] |
GAO P, YUAN C J. Resolution enhancement of digital holographic microscopy via synthetic aperture: a review[J].
Light:
Advanced Manufacturing, 2022, 3: 6.
|
[45] |
SHAKED N T, MICÓ V, TRUSIAK M,
et al. Off-axis digital holographic multiplexing for rapid wavefront acquisition and processing[J].
Advances in Optics and Photonics, 2020, 12(3): 556-611.
doi:10.1364/AOP.384612
|
[46] |
DARDIKMAN G, SHAKED N T. Is multiplexed off-axis holography for quantitative phase imaging more spatial bandwidth-efficient than on-axis holography? [Invited][J].
Journal of the Optical Society of America A, 2019, 36(2): A1-A11.
doi:10.1364/JOSAA.36.0000A1
|
[47] |
GIRSHOVITZ P, SHAKED N T. Doubling the field of view in off-axis low-coherence interferometric imaging[J].
Light:
Science&
Applications, 2014, 3(3): e151.
|
[48] |
HUANG ZH ZH, CAO L C. High bandwidth-utilization digital holographic multiplexing: an approach using Kramers–Kronig relations[J].
Advanced Photonics Research, 2022, 3(2): 2100273.
doi:10.1002/adpr.202100273
|
[49] |
MIRSKY S K, SHAKED N T. First experimental realization of six-pack holography and its application to dynamic synthetic aperture superresolution[J].
Optics Express, 2019, 27(19): 26708-26720.
doi:10.1364/OE.27.026708
|
[50] |
WOLBROMSKY L, TURKO N A, SHAKED N T. Single-exposure full-field multi-depth imaging using low-coherence holographic multiplexing[J].
Optics Letters, 2018, 43(9): 2046-2049.
doi:10.1364/OL.43.002046
|
[51] |
DARDIKMAN G, TURKO N A, NATIV N,
et al. Optimal spatial bandwidth capacity in multiplexed off-axis holography for rapid quantitative phase reconstruction and visualization[J].
Optics Express, 2017, 25(26): 33400-33415.
doi:10.1364/OE.25.033400
|
[52] |
MARPLE S L. Computing the discrete-time "analytic" signal via FFT[J].
IEEE Transactions on Signal Processing, 1999, 47(9): 2600-2603.
doi:10.1109/78.782222
|
[53] |
BAEK Y S, LEE K R, SHIN S,
et al. Kramers–Kronig holographic imaging for high-space-bandwidth product[J].
Optica, 2019, 6(1): 45-51.
doi:10.1364/OPTICA.6.000045
|
[54] |
FRENKLACH I, GIRSHOVITZ P, SHAKED N T. Off-axis interferometric phase microscopy with tripled imaging area[J].
Optics Letters, 2014, 39(6): 1525-1528.
doi:10.1364/OL.39.001525
|