Volume 16 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
WANG Hui-qin, HOU Wen-bin, HUANG Rui, CHEN Dan. Spatial pulse position modulation multi-classification detector based on deep learning[J]. Chinese Optics, 2023, 16(2): 415-424. doi: 10.37188/CO.2022-0106
Citation: WANG Hui-qin, HOU Wen-bin, HUANG Rui, CHEN Dan. Spatial pulse position modulation multi-classification detector based on deep learning[J]. Chinese Optics, 2023, 16(2): 415-424. doi: 10.37188/CO.2022-0106

Spatial pulse position modulation multi-classification detector based on deep learning

Funds:  Supported by National Natural Science Foundation of China (No. 61861026, No. 61875080); Natural Science Foundation of Gansu Province (No. 20JR5RA472); Shaanxi Provincial scientific and technological research projects (No. 2020GY-036); Xi'an Science and Technology Bureau project (No. GXYD14.21)
More Information
  • Corresponding author: 15117024169@139.com
  • Received Date: 27 May 2022
  • Rev Recd Date: 15 Jun 2022
  • Available Online: 08 Oct 2022
  • In order to effectively avoid high computational complexity when using Maximum Likelihood (ML) detection, a deep learning-based Spatial Pulse Position Modulation (SPPM) multi-classification detector is proposed by combining a Deep Neural Network (DNN) and step detection. In the detector, the DNN is used to establish a non-linear relationship between the received signal and the PPM symbols. Thereafter, the subsequent received PPM symbols are detected according to this relationship, so as to avoid the exhaustive search process of PPM symbol detection. The simulation results show that with the proposed detector, the SPPM system approximately achieves optimal bit error performance on the premise of greatly reducing detection complexity. Meanwhile, it overcomes the error platform effect caused by K-Means Clustering (KMC) step classification detection. When the PPM order is 64, the computational complexity of the proposal is about 95.45% and 33.54% lower than that of ML detectors and linear equalization DNN detectors, respectively.

     

  • loading
  • [1]
    LI Y Y, YANG P, DI RENZO M, et al. Precoded optical spatial modulation for indoor visible light communications[J]. IEEE Transactions on Communications, 2021, 69(4): 2518-2531. doi: 10.1109/TCOMM.2020.3041766
    [2]
    REN Y X, WANG ZH, XIE G D, et al. Atmospheric turbulence mitigation in an OAM-based MIMO free-space optical link using spatial diversity combined with MIMO equalization[J]. Optics Letters, 2016, 41(11): 2406-2409. doi: 10.1364/OL.41.002406
    [3]
    HAJJARIAN Z, FADLULLAH J, KAVEHRAD M. MIMO free space optical communications in turbid and turbulent atmosphere[J]. Journal of Communications, 2009, 4(8): 524-532.
    [4]
    ZHONG X, CHEN CH, FU SH, et al. . OFDM-based generalized spatial modulation for optical wireless communication[C]. Proceedings of the IEEE 16th Conference on Industrial Electronics and Applications, IEEE, 2021: 1311-1316.
    [5]
    ANANDKUMAR D, SANGEETHA R G. A survey on performance enhancement in free space optical communication system through channel models and modulation techniques[J]. Optical and Quantum Electronics, 2021, 53(1): 1-39. doi: 10.1007/s11082-020-02629-6
    [6]
    YU S Y, GENG CH, ZHONG J, et al. Performance analysis of optical spatial modulation over a correlated Gamma-Gamma turbulence channel[J]. Applied Optics, 2022, 61(8): 2025-2035. doi: 10.1364/AO.447644
    [7]
    张悦, 王惠琴, 曹明华, 等. 无线光通信中的增强型光空间调制[J]. 光学学报,2020,40(3):0306001. doi: 10.3788/AOS202040.0306001

    ZHANG Y, WANG H Q, CAO M H, et al. Enhanced optical spatial modulation in wireless optical communication[J]. Acta Optica Sinica, 2020, 40(3): 0306001. (in Chinese) doi: 10.3788/AOS202040.0306001
    [8]
    INOUE K. Analysis of BER degradation owing to multiple crosstalk channels in optical QPSK/QAM signals[J]. IEICE Transactions on Communications, 2021, E104.B(4): 370-377. doi: 10.1587/transcom.2020EBP3098
    [9]
    BHOWAL A, KSHETRIMAYUM R S. Advanced optical spatial modulation techniques for FSO communication[J]. IEEE Transactions on Communications, 2021, 69(2): 1163-1174.
    [10]
    徐宪莹, 岳殿武. 可见光通信中正交频分复用调制技术[J]. 中国光学,2021,14(3):516-527. doi: 10.37188/CO.2020-0051

    XU X Y, YUE D W. Orthogonal frequency division multiplexing modulation techniques in visible light communication[J]. Chinese Optics, 2021, 14(3): 516-527. (in Chinese) doi: 10.37188/CO.2020-0051
    [11]
    KUMAR D A, SANGEETHA R G. Power series based gamma-gamma fading MIMO/FSO link analysis with atmospheric turbulence and pointing errors[J]. Optical and Quantum Electronics, 2021, 53(9): 505. doi: 10.1007/s11082-021-03103-7
    [12]
    王惠琴, 宋梨花, 曹明华, 等. 湍流信道下光空间调制信号的压缩感知检测[J]. 光学 精密工程,2018,26(11):2669-2674. doi: 10.3788/OPE.20182611.2669

    WANG H Q, SONG L H, CAO M H, et al. Compressed sensing detection of optical spatial modulation signal in turbulent channel[J]. Optics and Precision Engineering, 2018, 26(11): 2669-2674. (in Chinese) doi: 10.3788/OPE.20182611.2669
    [13]
    XIE Y H, TEH K C, KOT A C. Deep learning-based joint detection for OFDM-NOMA scheme[J]. IEEE Communications Letters, 2021, 25(8): 1-27. doi: 10.1109/LCOMM.2021.3077878
    [14]
    BAEK M S, KWAK S W, JUNG J Y. Implementation methodologies of deep learning-based signal detection for conventional MIMO transmitters[J]. IEEE Transactions on Broadcasting, 2019, 65(3): 636-642. doi: 10.1109/TBC.2019.2891051
    [15]
    SHAMASUNDAR B, CHOCKALINGAM A. A DNN architecture for the detection of generalized spatial modulation signals[J]. IEEE Communications Letters, 2020, 24(12): 2770-2774. doi: 10.1109/LCOMM.2020.3018260
    [16]
    AMIRABADI M A, KAHAEI M H, NEZAMALHOSSEINI S A. Deep learning based detection technique for FSO communication systems[J]. Physical Communication, 2020, 43: 101229. doi: 10.1016/j.phycom.2020.101229
    [17]
    WANG T J, YANG F, SONG J. Deep learning-based detection scheme for visible light communication with generalized spatial modulation[J]. Optics Express, 2020, 28(20): 28906-28915. doi: 10.1364/OE.404463
    [18]
    LUONG T V, KO Y, VIEN N A, et al. Deep learning-based detector for OFDM-IM[J]. IEEE Wireless Communications Letters, 2019, 8(4): 1159-1162. doi: 10.1109/LWC.2019.2909893
    [19]
    周畅, 于笑楠, 姜会林, 等. 基于APD自适应增益控制的近地无线金宝搏188软件怎么用 通信信道大气湍流抑制方法研究[J]. 中国金宝搏188软件怎么用 ,2022,49(4):0406002. doi: 10.3788/CJL202249.0406002

    ZHOU CH, YU X N, JIANG H L, et al. Atmospheric turbulence suppression methods for near the earth wireless laser communication channels based on avalanche photodiode adaptive gain control[J]. Chinese Journal of Lasers, 2022, 49(4): 0406002. (in Chinese) doi: 10.3788/CJL202249.0406002
    [20]
    BARRIOS R, DIOS F. Exponentiated Weibull model for the irradiance probability density function of a laser beam propagating through atmospheric turbulence[J]. Optics &Laser Technology, 2013, 45(1): 13-20.
    [21]
    PHAM H T T, DANG N T. Performance improvement of spatial modulation-assisted FSO systems over Gamma-Gamma fading channels with geometric spreading[J]. Photonic Network Communications, 2017, 34(2): 213-220.
    [22]
    劳陈哲, 孙建锋, 周煜, 等. 多孔径接收相干合束系统性能研究[J]. 中国金宝搏188软件怎么用 ,2019,46(7):0705003. doi: 10.3788/CJL201946.0705003

    LAO CH ZH, SUN J F, ZHOU Y, et al. Performance of coherent beam combining system with multiple aperture receiver[J]. Chinese Journal of Lasers, 2019, 46(7): 0705003. (in Chinese) doi: 10.3788/CJL201946.0705003
    [23]
    王惠琴, 侯文斌, 彭清斌, 等. 基于K均值聚类的SPPM分步分类检测算法[J]. 通信学报,2022,43(1):161-171. doi: 10.11959/j.issn.1000-436x.2022010

    WANG H Q, HOU W B, PENG Q B, et al. Step-by-step classification detection algorithm of SPPM based on K-means clustering[J]. Journal on Communications, 2022, 43(1): 161-171. (in Chinese) doi: 10.11959/j.issn.1000-436x.2022010
    [24]
    霍婷婷, 张冬冬, 施祥蕾, 等. 基于碳纳米薄膜/砷化镓范德华异质结的高性能自驱动光电探测器研究[J]. 中国光学,2022,15(2):373-386. doi: 10.37188/CO.2021-0149

    HUO T T, ZHANG D D, SHI X L, et al. High-performance self-powered photodetectors based on the carbon nanomaterial/GaAs vdW heterojunctions[J]. Chinese Optics, 2022, 15(2): 373-386. (in Chinese) doi: 10.37188/CO.2021-0149
    [25]
    O’SHEA T, HOYDIS J. An introduction to deep learning for the physical layer[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(4): 563-575. doi: 10.1109/TCCN.2017.2758370
    [26]
    AMIRABADI M A, KAHAEI M H, NEZAMALHOSSENI S A. Low complexity deep learning algorithms for compensating atmospheric turbulence in the free space optical communication system[J]. IET Optoelectronics, 2022, 16(3): 93-105.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article views(505) PDF downloads(266) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map