Citation: | JIA Heng, FENG Xiao-rui, LI Da-guang, QIN Wei-ping, YANG Long, HE Wei-yan, MA Hui-yan, TENG Ying-yue. Design, preparation and application of orthogonal excitation-emission upconversion nanomaterials[J].Chinese Optics, 2023, 16(1): 76-93.doi:10.37188/CO.2022-0134 |
Rare earth-doped upconversion luminescence nanomaterials have received considerable attention from researchers due to their great potential for applications in many fields such as information security, biomedicine, optical fiber communication, digital displays, and energy. The recently-developed upconversion luminescence nanoparticles with orthogonal excitation-emission properties have attracted especially strong research interest because their distinct luminescence outputs can be dynamically modulated by switching the excitation conditions. The orthogonal luminescence properties further endow such nanocrystals with a set of new features and functionalities, which largely expands their potential applications. This review summarizes the progress in the development of orthogonal upconversion luminescence of rare earth ions, and provides a systematic discussion on design principles and construction strategies of orthogonal excitation-emission systems based on core-shell structures, as well as introduces their recent advances in various fields of applications including data storage, security anti-counterfeiting, digital displays, sensing, bioimaging and therapy. Furthermore, the prospective opportunities and challenges in the future research of orthogonal luminescence systems are also provided.
[1] |
WANG F, LIU X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J].
Chemical Society Reviews, 2009, 38(4): 976-989.
doi:10.1039/b809132n
|
[2] |
LIU X G, Yan CH H, CAPOBIANCO J A. Photon upconversion nanomaterials[J].
Chemical Society Reviews, 2015, 44(6): 1299-1301.
doi:10.1039/C5CS90009C
|
[3] |
ZHOU B, SHI B Y, JIN D Y,
et al. Controlling upconversion nanocrystals for emerging applications[J].
Nature Nanotechnology, 2015, 10(11): 924-936.
doi:10.1038/nnano.2015.251
|
[4] |
AUZEL F. Upconversion and anti-Stokes processes with f and d Ions in solids[J].
Chemical Reviews, 2004, 104(1): 139-174.
doi:10.1021/cr020357g
|
[5] |
BLOEMBERGEN N. Solid State Infrared Quantum Counters[J].
Physical Review Letters, 1959, 2(3): 84-85.
doi:10.1103/PhysRevLett.2.84
|
[6] |
AUZEL F. Compteur quantique par transfert d'energie entre deux ions de terres rares dans un tungstate mixte et dans un verre[J].
Comptes Rendus de l'Académie des Sciences de Paris, 1966, 262: 1016-1019.
|
[7] |
WANG M, ABBINENI G, CLEVENGER A,
et al. Upconversion nanoparticles: synthesis, surface modification and biological applications[J].
Nanomedicine:
Nanotechnology,
Biology and Medicine, 2011, 7(6): 710-729.
doi:10.1016/j.nano.2011.02.013
|
[8] |
HAASE M, SCHÄFER H. Upconverting Nanoparticles[J].
Angewandte Chemie International Edition, 2011, 50(26): 5808-5829.
doi:10.1002/anie.201005159
|
[9] |
LIU S B, YAN L, HUANG J SH,
et al. Controlling upconversion in emerging multilayer core–shell nanostructures: from fundamentals to frontier applications[J].
Chemical Society Reviews, 2022, 51(5): 1729-1765.
doi:10.1039/D1CS00753J
|
[10] |
YAN CH L, ZHAO H G, PEREPICHKA D F,
et al. Lanthanide ion doped upconverting nanoparticles: synthesis, structure and properties[J].
Small, 2016, 12(29): 3888-3907.
doi:10.1002/smll.201601565
|
[11] |
ZHU X H, ZHANG J, LIU J L,
et al. Recent progress of rare-earth doped upconversion nanoparticles: synthesis, optimization, and applications[J].
Advanced Science, 2019, 6(22): 1901358.
doi:10.1002/advs.201901358
|
[12] |
ZHENG K ZH, LOH K Y, WANG Y,
et al. Recent advances in upconversion nanocrystals: expanding the kaleidoscopic toolbox for emerging applications[J].
Nano Today, 2019, 29: 100797.
doi:10.1016/j.nantod.2019.100797
|
[13] |
QIN W P, Sin C, Liu ZH Y,
et al. Theory on cooperative quantum transitions of three identical lanthanide ions[J].
Journal of the Optical Society of America B, 2015, 32(2): 303-308.
doi:10.1364/JOSAB.32.000303
|
[14] |
QIN W P, LIU ZH Y, SIN C N,
et al. Multi-ion cooperative processes in Yb
3+clusters[J].
Light:
Science&
Applications, 2014, 3(8): e193-e193.
|
[15] |
TU L P, LIU X M, WU F,
et al. Excitation energy migration dynamics in upconversion nanomaterials[J].
Chemical Society Reviews, 2015, 44(6): 1331-1345.
doi:10.1039/C4CS00168K
|
[16] |
DONG H, SUN L D, YAN CH H. Energy transfer in lanthanide upconversion studies for extended optical applications[J].
Chemical Society Reviews, 2015, 44(6): 1608-1634.
doi:10.1039/C4CS00188E
|
[17] |
DENG R R, QIN F, CHEN R F,
et al. Temporal full-colour tuning through non-steady-state upconversion[J].
Nature Nanotechnology, 2015, 10(3): 237-242.
doi:10.1038/nnano.2014.317
|
[18] |
LI ZH Q, ZHANG Y, JIANG SH. Multicolor core/shell-structured upconversion fluorescent nanoparticles[J].
Advanced Materials, 2008, 20(24): 4765-4769.
doi:10.1002/adma.200801056
|
[19] |
WANG F, LIU X G. Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation[J].
Accounts of Chemical Research, 2014, 47(4): 1378-1385.
doi:10.1021/ar5000067
|
[20] |
WU M, YAN L, WANG T,
et al. Controlling red color–based multicolor upconversion through selective photon blocking[J].
Advanced Functional Materials, 2019, 29(25): 1804160.
doi:10.1002/adfm.201804160
|
[21] |
LI L L, ZHANG R B, YIN L L,
et al. Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes[J].
Angewandte Chemie, 2012, 124(25): 6225-6229.
doi:10.1002/ange.201109156
|
[22] |
WÜRTH C, FISCHER S, GRAUEL B,
et al. Quantum yields, surface quenching, and passivation efficiency for ultrasmall core/shell upconverting nanoparticles[J].
Journal of the American Chemical Society, 2018, 140(14): 4922-4928.
doi:10.1021/jacs.8b01458
|
[23] |
REN W, WEN SH H, TAWFIK S A,
et al. Anisotropic functionalization of upconversion nanoparticles[J].
Chemical Science, 2018, 9(18): 4352-4358.
doi:10.1039/C8SC01023D
|
[24] |
FAN Y, LIU L, ZHANG F. Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures[J].
Nano Today, 2019, 25: 68-84.
doi:10.1016/j.nantod.2019.02.009
|
[25] |
CHEN X, PENG D F, JU Q,
et al. Photon upconversion in core–shell nanoparticles[J].
Chemical Society Reviews, 2015, 44(6): 1318-1330.
doi:10.1039/C4CS00151F
|
[26] |
YAO W J, TIAN Q Y, WU W. Tunable emissions of upconversion fluorescence for security applications[J].
Advanced Optical Materials, 2019, 7(6): 1801171.
doi:10.1002/adom.201801171
|
[27] |
TANG Y N, DI W H, ZHAI X S,
et al. NIR-responsive photocatalytic activity and mechanism of NaYF
4:Yb, Tm@TiO
2core–shell nanoparticles[J].
ACS Catalysis, 2013, 3(3): 405-412.
doi:10.1021/cs300808r
|
[28] |
CHEN G Y, ÅGREN H, OHULCHANSKYY T Y,
et al. Light upconverting core–shell nanostructures: nanophotonic control for emerging applications[J].
Chemical Society Reviews, 2015, 44(6): 1680-1713.
doi:10.1039/C4CS00170B
|
[29] |
GAI SH L, YANG P P, LI CH X,
et al. Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers[J].
Advanced Functional Materials, 2010, 20(7): 1166-1172.
doi:10.1002/adfm.200902274
|
[30] |
ZHOU L, FAN Y, WANG R,
et al. High-capacity upconversion wavelength and lifetime binary encoding for multiplexed biodetection[J].
Angewandte Chemie International Edition, 2018, 57(39): 12824-12829.
doi:10.1002/anie.201808209
|
[31] |
ZHOU B, YAN L, HUANG J SH,
et al. NIR II-responsive photon upconversion through energy migration in an ytterbium sublattice[J].
Nature Photonics, 2020, 14(12): 760-766.
doi:10.1038/s41566-020-00714-6
|
[32] |
ZHANG ZH, ZHANG Y. Orthogonal emissive upconversion nanoparticles: material design and applications[J].
Small, 2021, 17(11): 2004552.
doi:10.1002/smll.202004552
|
[33] |
LAI J P, ZHANG Y X, PASQUALE N,
et al. An upconversion nanoparticle with orthogonal emissions using dual NIR excitations for controlled two-way photoswitching[J].
Angewandte Chemie International Edition, 2014, 53(52): 14419-14423.
doi:10.1002/anie.201408219
|
[34] |
LIU L, YAN D, XU L,
et al. Intense and color-tunable upconversion through 980 and 1530 nm excitations[J].
Journal of Luminescence, 2020, 224: 117306.
doi:10.1016/j.jlumin.2020.117306
|
[35] |
QUINTANILLA M, REN F Q, MA D L,
et al. Light management in upconverting nanoparticles: ultrasmall core/shell architectures to tune the emission color[J].
ACS Photonics, 2014, 1(8): 662-669.
doi:10.1021/ph500208q
|
[36] |
LIU S B, YAN L, LI Q Q,
et al. Tri-channel photon emission of lanthanides in lithium-sublattice core-shell nanostructures for multiple anti-counterfeiting[J].
Chemical Engineering Journal, 2020, 397: 125451.
doi:10.1016/j.cej.2020.125451
|
[37] |
WANG F, DENG R R, WANG J,
et al. Tuning upconversion through energy migration in core–shell nanoparticles[J].
Nature Materials, 2011, 10(12): 968-973.
doi:10.1038/nmat3149
|
[38] |
CHEN D Q, LEI L, YANG A P,
et al. Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals[J].
Chemical Communications, 2012, 48(47): 5898-5900.
doi:10.1039/c2cc32102e
|
[39] |
XU M, CHEN D Q, HUANG P,
et al. A dual-functional upconversion core@shell nanostructure for white-light-emission and temperature sensing[J].
Journal of Materials Chemistry C, 2016, 4(27): 6516-6524.
doi:10.1039/C6TC02218A
|
[40] |
FISCHER S, BRONSTEIN N D, SWABECK J K,
et al. Precise tuning of surface quenching for luminescence enhancement in core–shell lanthanide-doped nanocrystals[J].
Nano Letters, 2016, 16(11): 7241-7247.
doi:10.1021/acs.nanolett.6b03683
|
[41] |
WEN H L, ZHU H, CHEN X,
et al. Upconverting near-infrared light through energy management in core-shell-shell nanoparticles[J].
Angewandte Chemie International Edition, 2013, 52(50): 13419-13423.
doi:10.1002/anie.201306811
|
[42] |
LI X M, GUO ZH ZH, ZHAO T C,
et al. Filtration shell mediated power density independent orthogonal excitations-emissions upconversion luminescence[J].
Angewandte Chemie International Edition, 2016, 55(7): 2464-2469.
doi:10.1002/anie.201510609
|
[43] |
DONG H, SUN L D, FENG W,
et al. Versatile spectral and lifetime multiplexing nanoplatform with excitation orthogonalized upconversion luminescence[J].
ACS Nano, 2017, 11(3): 3289-3297.
doi:10.1021/acsnano.7b00559
|
[44] |
ZHENG K ZH, HAN S Y, ZENG X,
et al. Rewritable optical memory through high-registry orthogonal upconversion[J].
Advanced Materials, 2018, 30(30): 1801726.
doi:10.1002/adma.201801726
|
[45] |
HUANG B R, WU Q SH, PENG X Y,
et al. One-scan fluorescence emission difference nanoscopy developed with excitation orthogonalized upconversion nanoparticles[J].
Nanoscale, 2018, 10(45): 21025-21030.
doi:10.1039/C8NR07017B
|
[46] |
ZUO J, TU L P, LI Q Q,
et al. Near infrared light sensitive ultraviolet–blue nanophotoswitch for imaging-guided “off–on” therapy[J].
ACS Nano, 2018, 12(4): 3217-3225.
doi:10.1021/acsnano.7b07393
|
[47] |
MEI Q S, BANSAL A, JAYAKUMAR M K G,
et al. Manipulating energy migration within single lanthanide activator for switchable upconversion emissions towards bidirectional photoactivation[J].
Nature Communications, 2019, 10(1): 4416.
doi:10.1038/s41467-019-12374-4
|
[48] |
GUO X R, YUAN Y, LIU J L,
et al. Single-line flow assay platform based on orthogonal emissive upconversion nanoparticles[J].
Analytical Chemistry, 2021, 93(5): 3010-3017.
doi:10.1021/acs.analchem.0c05061
|
[49] |
LEI ZH D, LING X, MEI Q S,
et al. An excitation navigating energy migration of lanthanide ions in upconversion nanoparticles[J].
Advanced Materials, 2020, 32(9): 1906225.
doi:10.1002/adma.201906225
|
[50] |
DI ZH H, LIU B, ZHAO J,
et al. An orthogonally regulatable DNA nanodevice for spatiotemporally controlled biorecognition and tumor treatment[J].
Science Advances, 2020, 6(25): eaba9381.
doi:10.1126/sciadv.aba9381
|
[51] |
HUANG J SH, YAN L, LIU S B,
et al. Dynamic control of orthogonal upconversion in migratory core–shell nanostructure toward information security[J].
Advanced Functional Materials, 2021, 31(14): 2009796.
doi:10.1002/adfm.202009796
|
[52] |
JIA H, LI D G, ZHANG D,
et al. High color-purity red, green, and blue-emissive core–shell upconversion nanoparticles using ternary near-infrared quadrature excitations[J].
ACS Applied Materials&
Interfaces, 2021, 13(3): 4402-4409.
|
[53] |
秦伟平, 贾恒, 张丹, 等. 具有三元正交激发响应三基色上转换发光性能的五层核壳结构纳米材料: 中国, 202010685751. 7[p]. 2022–05-31.
QIN W P, JIA H, ZHANG D,
et al. .Core/quintuple-shell nanomaterials with ternary orthogonal excitation-responsive three-primary-color upconversion luminescence property: CN, 202010685751. 7[p]. 2022–05-31. (in Chinese)
|
[54] |
秦伟平, 贾恒, 董妍惠, 等. 一种制备正交激发-发射响应的三基色上转换发光材料的方法: 中国, 202010685752. 1[p]. 2022–05-31.
QIN W P, JIA H, DONG Y H,
et al. . A method for preparing orthogonal excitation-emission-responsive three-primary-color upconversion luminescencet materials: CN, 202010685752. 1[p]. 2022–05-31. (in Chinese)
|
[55] |
秦伟平, 贾恒, 崔珈豪, 等. 一种基于δ-MnO
2纳米片修饰正交三基色上转换发光纳米晶的加密墨水及其制备方法: 中国, 202010685712. 7[p]. 2021–08-27.
QIN W P, JIA H, CUI J H,
et al. .An encryption ink based on orthogonal three-primary-color upconversion luminescence nanocrystals modified by δ-MnO
2nanosheets and its preparation method: CN, 202010685712. 7[p]. 2021–08-27. (in Chinese)
|
[56] |
秦伟平, 贾恒, 李大光, 等. 一种红绿蓝三基色正交上转换荧光安全墨水的制备方法: 中国, 202010685263. 6[p]. 2021–09-24.
QIN W P, JIA H, LI D G,
et al. .A preparation method of red, green and blue tri-color orthogonal upconversion fluorescence security ink: CN, 202010685263. 6[p]. 2021–09-24. (in Chinese)
|
[57] |
秦伟平, 贾恒, 周敏, 等. 一种具有三基色正交上转换荧光特性的多级防伪材料及应用: 中国, 202010685713. 1[p]. 2021–08-17.
QIN W P, JIA H, ZHOU M,
et al. .A multi-level anticounterfeiting material with three-primary-color orthogonal upconversion fluorescence property and its application: CN, 202010685713. 1[p]. 2021–08-17. (in Chinese)
|
[58] |
JIA H, TENG Y Y, LI N,
et al. Dual stimuli-responsive inks based on orthogonal upconversion three-primary-color luminescence for advanced anticounterfeiting applications[J].
ACS Materials Letters, 2022, 4(7): 1306-1313.
doi:10.1021/acsmaterialslett.2c00328
|
[59] |
HONG A R, KYHM J H, KANG G M,
et al. Orthogonal R/G/B upconversion luminescence-based full-color tunable upconversion nanophosphors for transparent displays[J].
Nano Letters, 2021, 21(11): 4838-4844.
doi:10.1021/acs.nanolett.1c01510
|
[60] |
LIU X, CHEN H M, WANG Y T,
et al. Near-infrared manipulation of multiple neuronal populations via trichromatic upconversion[J].
Nature Communications, 2021, 12(1): 5662.
doi:10.1038/s41467-021-25993-7
|
[61] |
CHEN T, SHANG Y F, HAO SH W,
et al. Reproducible single-droplet multiplexed detection through excitation-encoded tri-mode upconversion solid sensors[J].
Chemical Engineering Journal, 2022, 430: 131242.
doi:10.1016/j.cej.2021.131242
|
[62] |
HU P, ZHOU SH, WANG Y,
et al. Printable, room-temperature self-healing and full-color-tunable emissive composites for transparent panchromatic display and flexible high-level anti-counterfeiting[J].
Chemical Engineering Journal, 2022, 431: 133728.
doi:10.1016/j.cej.2021.133728
|
[63] |
BOYER J C, CARLING C J, GATES B D,
et al. Two-way photoswitching using one type of near-infrared light, upconverting nanoparticles, and changing only the light intensity[J].
Journal of the American Chemical Society, 2010, 132(44): 15766-15772.
doi:10.1021/ja107184z
|
[64] |
SHAO Q Y, ZHANG G T, OUYANG L L,
et al. Emission color tuning of core/shell upconversion nanoparticles through modulation of laser power or temperature[J].
Nanoscale, 2017, 9(33): 12132-12141.
doi:10.1039/C7NR03682E
|
[65] |
WANG Y, ZHENG K ZH, SONG SH Y,
et al. Remote manipulation of upconversion luminescence[J].
Chemical Society Reviews, 2018, 47(17): 6473-6485.
doi:10.1039/C8CS00124C
|
[66] |
ZHANG C, YANG L, ZHAO J,
et al. White-light emission from an integrated upconversion nanostructure: toward multicolor displays modulated by laser power[J].
Angewandte Chemie, 2015, 127(39): 11693-11697.
doi:10.1002/ange.201504518
|
[67] |
HU M, MA D D, LIU CH CH,
et al. Intense white emission from a single-upconversion nanoparticle and tunable emission colour with laser power[J].
Journal of Materials Chemistry C, 2016, 4(29): 6975-6981.
doi:10.1039/C6TC01437B
|
[68] |
CHEN B, LIU Y, XIAO Y,
et al. Amplifying excitation-power sensitivity of photon upconversion in a NaYbF
4:Ho nanostructure for direct visualization of electromagnetic hotspots[J].
The Journal of Physical Chemistry Letters, 2016, 7(23): 4916-4921.
doi:10.1021/acs.jpclett.6b02210
|
[69] |
ZHAO F F, YIN D G, WU CH L,
et al. Huge enhancement of upconversion luminescence by dye/Nd
3+sensitization of quenching-shield sandwich structured upconversion nanocrystals under 808 nm excitation[J].
Dalton Transactions, 2017, 46(46): 16180-16189.
doi:10.1039/C7DT03383D
|
[70] |
XIONG W, LIN SH K, XIE Y P. Growth and spectral properties of Er
3+:GdVO
4crystal[J].
Journal of Crystal Growth, 2004, 263(1–4): 353–357.
|
[71] |
YIN X M, WANG H, TIAN Y,
et al. Three primary color emissions from single multilayered nanocrystals[J].
Nanoscale, 2018, 10(20): 9673-9678.
doi:10.1039/C8NR01752B
|
[72] |
TANG M, ZHU X H, ZHANG Y H,
et al. Near-infrared excited orthogonal emissive upconversion nanoparticles for imaging-guided on-demand therapy[J].
ACS Nano, 2019, 13(9): 10405-10418.
doi:10.1021/acsnano.9b04200
|
[73] |
SUO H, Zhu Q, Zhang X,
et al. High-security anti-counterfeiting through upconversion luminescence[J].
Materials Today Physics, 2021, 21: 100520.
doi:10.1016/j.mtphys.2021.100520
|
[74] |
DOWNING E, HESSELINK L, RALSTON J,
et al. A three-color, solid-state, three-dimensional display[J].
Science, 1996, 273(5279): 1185-1189.
doi:10.1126/science.273.5279.1185
|