Citation: | TIAN Jun-tao, LI Hui, ZHAO Li-li, LI Zhi-yong, WANG Hai, LIU Song-yang, XU Wen-ning, BAI Jin-zhou, TAN Rong-qing. Tunable long-wave infrared optical parametric oscillator based on temperature-adjustable ZnGeP2[J]. Chinese Optics, 2023, 16(4): 861-867. doi: 10.37188/CO.2022-0217 |
In order to realize tunable longwave infrared laser, we design a ZGP temperature tuned longwave infrared optical parametric oscillator. A Ho:YAG laser with the center wavelength of 2097 nm is used to pump ZGP crystals with different phase matching angles. The temperature adjustable properties of ZGP-OPO is researched by changing the operating temperature of crystal. The laser with a segment continuously tunable range of 7.53−8.77 μm is realized in the temperature range of 15−30°C, with a total tuning range of 1.24 μm. The output power of ZnGeP2-Optical Parametric Oscillator(ZGP-OPO) is greater than 1.503 W over the entire tuning range. The output power is 1.503 W at the idler wavelength of 8.77 μm, and the corresponding slope efficiency and optical conversion efficiency are 12.19% and 6.53%, respectively. The experimental results show that temperature tuning of ZGP is an effective technical method to obtain continuously tunable long-wave infrared laser. This research has potential application value in the field of engineering of tunable long-wave laser.
[1] |
MELKONIAN J M, ARMOUGOM J, RAYBAUT M, et al. Long-wave infrared multi-wavelength optical source for standoff detection of chemical warfare agents[J]. Applied Optics, 2020, 59(35): 11156-11166. doi: 10.1364/AO.410053
|
[2] |
陈颖. 机载先进红外对抗技术发展思考[J]. 航天电子对抗,2020,36(1):19-23. doi: 10.3969/j.issn.1673-2421.2020.01.005
CHEN Y. Development of airborne advanced infrared countermeasures technology[J]. Aerospace Electronic Warfare, 2020, 36(1): 19-23. (in Chinese) doi: 10.3969/j.issn.1673-2421.2020.01.005
|
[3] |
SIJAN A. Development of military lasers for optical countermeasures in the mid-IR[J]. Proceedings of SPIE, 2009, 7483: 748304. doi: 10.1117/12.835439
|
[4] |
LU Y, ZHU Z R, BAI J ZH, et al. Generation of tail-free short pulses using high-pressure CO2 laser[J]. Chinese Optics Letters, 2022, 20(5): 051401. doi: 10.3788/COL202220.051401
|
[5] |
潘其坤, 苗昉晨, 司红利, 等. 紧凑型波长自动调谐脉冲CO2金宝搏188软件怎么用
器[J]. 中国光学(中英文),2022,15(5):1007-1012. doi: 10.37188/CO.2022-0107
PAN Q K, MIAO F CH, SI H L, et al. Compact pulsed CO2 laser with wavelength automatic tuning[J]. Chinese Optics, 2022, 15(5): 1007-1012. (in Chinese) doi: 10.37188/CO.2022-0107
|
[6] |
姚宝权, 杨科, 密淑一, 等. 高功率Ho: YAG金宝搏188软件怎么用
器及其泵浦的磷锗锌、硒镓钡和硒化镉中长波红外非线性光学频率转换研究进展[J]. 中国金宝搏188软件怎么用
,2022,49(1):0101002. doi: 10.3788/CJL202249.0101002
YAO B Q, YANG K, MI SH Y, et al. Research progress of high-power Ho: YAG lasers and its application for pumping mid-far-infrared nonlinear frequency conversion in ZGP, BGSe and CdSe crystals[J]. Chinese Journal of Lasers, 2022, 49(1): 0101002. (in Chinese) doi: 10.3788/CJL202249.0101002
|
[7] |
李充, 谢冀江, 潘其坤, 等. 中红外光学参量振荡器技术进展[J]. 中国光学,2016,9(6):615-624.
LI CH, XIE J J, PAN Q K, et al. Progress of mid-infrared optical parametric oscillator[J]. Chinese Optics, 2016, 9(6): 615-624. (in Chinese)
|
[8] |
黄彦, 张宇露, 高志强, 等. 用于痕量气体检测的宽调谐外腔量子级联金宝搏188软件怎么用
器研究[J]. 遥测遥控,2019,40(1):20-27. doi: 10.3969/j.issn.2095-1000.2019.01.004
HUANG Y, ZHANG Y L, GAO ZH Q, et al. Research on widely tunable external cavity quantum cascade lasers for trace gas detection[J]. Journal of Telemetry,Tracking and Command, 2019, 40(1): 20-27. (in Chinese) doi: 10.3969/j.issn.2095-1000.2019.01.004
|
[9] |
QIAN CH P, DUAN X M, YAO B Q, et al. 11.4 W long-wave infrared source based on ZnGeP2 optical parametric amplifier[J]. Optics Express, 2018, 26(23): 30195-30201. doi: 10.1364/OE.26.030195
|
[10] |
HAIDAR S, MIYAMOTO K, ITO H. Generation of tunable mid-IR (5.5 - 9.3 μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator[J]. Optics Communications, 2004, 241(1-3): 173-178. doi: 10.1016/j.optcom.2004.06.065
|
[11] |
LIU G Y, CHEN Y, YAO B Q, et al. 3.5 W long-wave infrared ZnGeP2 optical parametric oscillator at 9.8 µm[J]. Optics Letters, 2020, 45(8): 2347-2350. doi: 10.1364/OL.389603
|
[12] |
TIAN J T, LI ZH Y, ZHAO L L, et al. Long-wave infrared ZnGeP2 optical parametric oscillator with improved tunability by use of a cavity compensation technique[J]. Optical Engineering, 2022, 61(7): 076102.
|
[13] |
DAS S. Pump tuned wide tunable noncritically phase-matched ZnGeP2 narrow line width optical parametric oscillator[J]. Infrared Physics &Technology, 2015, 69: 13-18.
|
[14] |
孟冬冬, 乔占朵, 高宝光, 等. 基于ZnGeP2光参量振荡器的长波红外双波段调谐实验研究[J]. 红外与金宝搏188软件怎么用
工程,2022,51(5):2021G008. doi: 10.3788/IRLA2021G008
MENG D D, QIAO ZH D, GAO B G, et al. Experimental study on tunable characteristics of optical parametric oscillator based on ZnGeP2 in long-infared dual-band[J]. Infrared and Laser Engineering, 2022, 51(5): 2021G008. (in Chinese) doi: 10.3788/IRLA2021G008
|
[15] |
BHAR G, GHOSH G. Temperature dependent phase-matched nonlinear optical devices using CdSe and ZnGeP2[J]. IEEE Journal of Quantum Electronics, 1980, 16(8): 838-843. doi: 10.1109/JQE.1980.1070580
|
[16] |
IONIN A A, KINYAEVSKIY I O, KLIMACHEV Y M, et al. Temperature phase-matching tuning of nonlinear ZnGeP2 crystal for frequency conversion under noncritical spectral phase-matching[J]. Infrared Physics &Technology, 2019, 102: 103009.
|
[17] |
GUHA S. Updated temperature dependent Sellmeier equations for ZnGeP2 crystals (Conference Presentation)[J]. Proceedings of SPIE, 2019, 10902: 1090210.
|