Volume 16 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
ZHAO De-min, SUN Yang, LIN Zai-ping, XIONG Wei. Infrared small target detection via L1−2 spatial-temporal total variation regularization[J]. Chinese Optics, 2023, 16(5): 1066-1080. doi: 10.37188/CO.2022-0229
Citation: ZHAO De-min, SUN Yang, LIN Zai-ping, XIONG Wei. Infrared small target detection via L1−2 spatial-temporal total variation regularization[J]. Chinese Optics, 2023, 16(5): 1066-1080. doi: 10.37188/CO.2022-0229

Infrared small target detection via L1−2 spatial-temporal total variation regularization

Funds:  Supported by National Natural Science Foundation of China (No. 91738302)
More Information
  • Corresponding author: sunyang_kd@163.com
  • Received Date: 08 Nov 2022
  • Rev Recd Date: 01 Dec 2022
  • Available Online: 14 Apr 2023
  • To solve the high false alarms caused by complex background clutters in infrared small-target detection, a novel detection method based on ${L_{1 - 2}}$ spatial-temporal total variation regularization is proposed. First, the input infrared image sequence is transformed into a Spatial-Temporal Infrared Patch-Tensor (STIPT) structure. This step can associate the spatial and temporal information by using the high dimensional data structures in the tensor domain. Then, weighted Schatten p-norm and ${L_{1 - 2}}$ spatial-temporal total variation regularization are incorporated to recover the low-rank background component to preserve the strong edges and corners, which can improve the accuracy of sparse target component recovery. Finally, the STIPT structure can be transformed into an infrared image sequence by the inverse operator, and an adaptive threshold segmentation is used to obtain the real target. The method is verified using a contrast test with other five methods, and the experimental results show that the false alarm rate by this method decreases to 71.4%, 71.7%, 68.5%, 74.3% and 20.47% compared with the Maxemeidan, Tophat, LIRDNet, DNANet and WSNMSTIPT algorithms. The time cost also decreased to 42.4%, 82.9% and 28.7% of that of the Maxemeidan, DNANet and WSNMSTIPT. The extensive experimental results demonstrate the superiority of this method in detection performance, which can greatly improve the accuracy and efficiency of target detection with complex background clutters.

     

  • loading
  • [1]
    黄乐弘, 曹立华, 李宁, 等. 深度学习的空间红外弱小目标状态感知方法[J]. 中国光学,2020,13(3):527-536.

    HUANG L H, CAO L H, LI N, et al. A state perception method for infrared dim and small targets with deep learning[J]. Chinese Optics, 2020, 13(3): 527-536. (in Chinese)
    [2]
    QIU Z, MA Y, FAN F, et al. Adaptive scale patch-based contrast measure for dim and small infrared target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
    [3]
    WAN M J, GU G H, XU Y K, et al. Total variation-based interframe infrared patch-image model for small target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 7003305.
    [4]
    何耀民, 何华锋, 徐永壮, 等. 基于改进小波变换的海上目标检测[J]. 系统工程与电子技术,2020,42(1):83-89. doi: 10.3969/j.issn.1001-506X.2020.01.12

    HE Y M, HE H F, XU Y ZH, et al. Marine target detection based on improved wavelet transform[J]. Systems Engineering and Electronics, 2020, 42(1): 83-89. (in Chinese) doi: 10.3969/j.issn.1001-506X.2020.01.12
    [5]
    DU J M, LU H ZH, ZHANG L P, et al. A spatial-temporal feature-based detection framework for infrared dim small target[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 3000412.
    [6]
    CHEN Y H, LI L Y, LIU X, et al. A multi-task framework for infrared small target detection and segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5003109.
    [7]
    LIU X, LI L Y, LIU L Q, et al. Moving dim and small target detection in multiframe infrared sequence with low SCR based on temporal profile similarity[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 7507005.
    [8]
    WANG G H, TAO B J, KONG X, et al. Infrared small target detection using nonoverlapping patch spatial–temporal tensor factorization with capped nuclear norm regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5001417.
    [9]
    REED I S, GAGLIARDI R M, STOTTS L B. Optical moving target detection with 3-D matched filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 327-336. doi: 10.1109/7.7174
    [10]
    LI M, ZHANG T X, YANG W D, et al. Moving weak point target detection and estimation with three-dimensional double directional filter in IR cluttered background[J]. Optical Engineering, 2005, 44(10): 107007. doi: 10.1117/1.2056586
    [11]
    BAI X ZH, ZHOU F G. Analysis of new top-hat transformation and the application for infrared dim small target detection[J]. Pattern Recognition, 2010, 43(6): 2145-2156. doi: 10.1016/j.patcog.2009.12.023
    [12]
    DESHPANDE S D, ER M H, VENKATESWARLU R, et al. Max-mean and max-median filters for detection of small targets[J]. Proceedings of SPIE, 1999, 3809: 74-83. doi: 10.1117/12.364049
    [13]
    LIU Y, PENG ZH M. Infrared small target detection based on resampling-guided image model[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 7002405.
    [14]
    CHEN C L P, LI H, WEI Y T, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 574-581. doi: 10.1109/TGRS.2013.2242477
    [15]
    WEI Y T, YOU X G, LI H. Multiscale patch-based contrast measure for small infrared target detection[J]. Pattern Recognition, 2016, 58: 216-226. doi: 10.1016/j.patcog.2016.04.002
    [16]
    DENG H, SUN X P, LIU M L, et al. Small infrared target detection based on weighted local difference measure[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 4204-4214. doi: 10.1109/TGRS.2016.2538295
    [17]
    MCINTOSH B, VENKATARAMANAN S, MAHALANOBIS A. Infrared target detection in cluttered environments by maximization of a target to clutter ratio (TCR) metric using a convolutional neural network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 485-496.
    [18]
    林再平, 李博扬, 李淼, 等. 结合跨尺度特征融合与瓶颈注意力模块的轻量型红外小目标检测网络[J]. 红外与毫米波学报,2022,41(6):1102-1112. doi: 10.11972/j.issn.1001-9014.2022.06.020

    LIN Z P, LI B Y, LI M, et al. Light-weight infrared small target detection combining cross-scale feature fusion with bottleneck attention module[J]. Journal of Infrared and Millimeter Waves, 2022, 41(6): 1102-1112. (in Chinese) doi: 10.11972/j.issn.1001-9014.2022.06.020
    [19]
    LI B Y, XIAO C, WANG L G, et al. Dense nested attention network for infrared small target detection[J]. IEEE Transactions on Image Processing, 2022, 32: 1745-1758.
    [20]
    GAO CH Q, MENG D Y, YANG Y, et al. Infrared patch-image model for small target detection in a single image[J]. IEEE Transactions on Image Processing, 2013, 22(12): 4996-5009. doi: 10.1109/TIP.2013.2281420
    [21]
    WANG Q Q, GAO Q X, SUN G, et al. Double robust principal component analysis[J]. Neurocomputing, 2020, 391: 119-128. doi: 10.1016/j.neucom.2020.01.097
    [22]
    DAI Y M, WU Y Q. Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3752-3767. doi: 10.1109/JSTARS.2017.2700023
    [23]
    SUN Y, YANG J G, LI M, et al. Infrared small target detection via spatial–temporal infrared patch-tensor model and weighted Schatten p-norm minimization[J]. Infrared Physics &Technology, 2019, 102: 103050.
    [24]
    SUN Y, YANG J G, LI M, et al. Infrared small-faint target detection using non-i. i. d. mixture of Gaussians and flux density[J]. Remote Sensing, 2019, 11(23): 2831. doi: 10.3390/rs11232831
    [25]
    SUN Y, YANG J G, AN W. Infrared dim and small target detection via multiple subspace learning and spatial-temporal patch-tensor model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5): 3737-3752. doi: 10.1109/TGRS.2020.3022069
    [26]
    BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends ® in Machine Learning, 2011, 3(1): 1-122.
    [27]
    LOU Y F, YIN P H, HE Q, et al. Computing sparse representation in a highly coherent dictionary based on difference of L1 and L2[J]. Journal of Scientific Computing, 2015, 64(1): 178-196. doi: 10.1007/s10915-014-9930-1
    [28]
    TAO P D, AN L T H. A D. C. optimization algorithm for solving the trust-region subproblem[J]. SIAM Journal on Optimization, 2017, 8(2): 476-505.
    [29]
    LOU Y F, ZENG T Y, OSHER S, et al. A weighted difference of anisotropic and isotropic total variation model for image processing[J]. SIAM Journal on Imaging Sciences, 2015, 8(3): 1798-1823. doi: 10.1137/14098435X
    [30]
    BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202. doi: 10.1137/080716542
    [31]
    赵鹏鹏, 李庶中, 李迅, 等. 融合视觉显著性和局部熵的红外弱小目标检测[J]. 中国光学,2022,15(2):267-275.

    ZHAO P P, LI SH ZH, LI X, et al. Infrared dim small target detection based on visual saliency and local entropy[J]. Chinese Optics, 2022, 15(2): 267-275. (in Chinese)
    [32]
    程博阳, 李婷, 王喻林. 基于视觉显著性加权与梯度奇异值最大的红外与可见光图像融合[J]. 中国光学,2022,15(4):675-688.

    CHENG B Y, LI T, WANG Y L. Fusion of infrared and visible light images based on visual saliency weighting and maximum gradient singular value[J]. Chinese Optics, 2022, 15(4): 675-688. (in Chinese)
    [33]
    刘杨帆, 曹立华, 李宁, 等. 基于YOLOv4的空间红外弱目标检测[J]. 液晶与显示,2021,36(4):615-623. doi: 10.37188/CJLCD.2020-0227

    LIU Y F, CAO L H, LI N, et al. Detection of space infrared weak target based on YOLOv4[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(4): 615-623. (in Chinese) doi: 10.37188/CJLCD.2020-0227
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article views(372) PDF downloads(174) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map