Citation: | FU Qiang, ZHANG Zhi-miao, ZHAO Shang-nan, LIU Yang, DONG Yang. Research progress of miniature head-mounted single photon fluorescence microscopic imaging technique[J].Chinese Optics, 2023, 16(5): 1010-1021.doi:10.37188/CO.2023-0007 |
Miniature head-mounted single-photon fluorescence microscopy is a breakthrough approach for neuroscience research that has emerged in recent years. It can image the neural activity of freely moving vivo animals in real time, providing an unprecedented way to access neural signals and rapidly enhancing the understanding of how the brain works. Driven by the needs of brain science research, there have been many types of miniature head-mounted single-photon fluorescence microscopes, such as high-resolution imaging, wireless recording, 3D imaging, two-region imaging and two-color imaging. In order to have a more comprehensive understanding of this new optical neuroimaging technology, we classify its technologies according to the imaging field of view, introduce the characteristics of different types of micro-head-mounted single-photon fluorescence microscopes reported so far, and focus on the optical system scheme and optical performance parameters used. The advantages and disadvantages of different schemes are analyzed and compared and the future direction of development is described to provide reference for the practical application of brain science researchers.
[1] |
CHEN SH Y, WANG Z CH, ZHANG D,
et al. Miniature fluorescence microscopy for imaging brain activity in freely-behaving animals[J].
Neuroscience Bulletin, 2020, 36(10): 1182-1190.
doi:10.1007/s12264-020-00561-z
|
[2] |
GRIENBERGER C, KONNERTH A. Imaging calcium in neurons[J].
Neuron, 2012, 73(5): 862-885.
doi:10.1016/j.neuron.2012.02.011
|
[3] |
王义强, 林方睿, 胡睿, 等. 大视场光学显微成像技术[J]. 中国光学(中英文),2022,15(6):1194-1210.
WANG Y Q, LIN F R, HU R,
et al. Large field-of-view optical microscopic imaging technology[J].
Chinese Optics, 2022, 15(6): 1194-1210. (in Chinese)
|
[4] |
陈帅, 任林, 周镇乔, 等. 在体跨尺度双光子显微成像技术[J]. 中国光学(中英文),2022,15(6):1167-1181.
CHEN SH, REN L, ZHOU ZH Q,
et al. In-vivo across-scales two-photon microscopic imaging technique[J].
Chinese Optics, 2022, 15(6): 1167-1181. (in Chinese)
|
[5] |
王鹏, 周瑶, 赵宇轩, 等. 用于多尺度高分辨率三维成像的双环光片荧光显微技术[J]. 中国光学(中英文),2022,15(6):1321-1331.
WANG P, ZHOU Y, ZHAO Y X,
et al. Double-ring-modulated light sheet fluorescence microscopic technique for multi-scale high-resolution 3D imaging[J].
Chinese Optics, 2022, 15(6): 1321-1331. (in Chinese)
|
[6] |
YU H, SENARATHNA J, TYLER B M,
et al. Miniaturized optical neuroimaging in unrestrained animals[J].
NeuroImage, 2015, 113: 397-406.
doi:10.1016/j.neuroimage.2015.02.070
|
[7] |
AHARONI D, KHAKH B S, SILVA A J,
et al. All the light that we can see: a new era in miniaturized microscopy[J].
Nature Methods, 2019, 16(1): 11-13.
doi:10.1038/s41592-018-0266-x
|
[8] |
ZONG W J, WU R L, LI M L,
et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice[J].
Nature Methods, 2017, 14(7): 713-719.
doi:10.1038/nmeth.4305
|
[9] |
GHOSH K K, BURNS L D, COCKER E D,
et al. Miniaturized integration of a fluorescence microscope[J].
Nature Methods, 2011, 8(10): 871-878.
doi:10.1038/nmeth.1694
|
[10] |
CAI D J, AHARONI D, SHUMAN T,
et al. A shared neural ensemble links distinct contextual memories encoded close in time[J].
Nature, 2016, 534(7605): 115-118.
doi:10.1038/nature17955
|
[11] |
CAMPOS P, WALKER J J, MOLLARD P. Diving into the brain: deep-brain imaging techniques in conscious animals[J].
Journal of Endocrinology, 2020, 246(2): R33-R50.
doi:10.1530/JOE-20-0028
|
[12] |
BARBERA G, LIANG B, ZHANG L F,
et al. Spatially compact neural clusters in the dorsal striatum encode locomotion relevant information[J].
Neuron, 2016, 92(1): 202-213.
doi:10.1016/j.neuron.2016.08.037
|
[13] |
ZHANG L F, LIANG B, BARBERA G,
et al. Miniscope GRIN lens system for calcium imaging of neuronal activity from deep brain structures in behaving animals[J].
Current Protocols in Neuroscience, 2019, 86(1): e56.
doi:10.1002/cpns.56
|
[14] |
LIANG B, ZHANG L F, BARBERA G,
et al. Distinct and dynamic ON and OFF neural ensembles in the prefrontal cortex code social exploration[J].
Neuron, 2018, 100(3): 700-714.e9.
doi:10.1016/j.neuron.2018.08.043
|
[15] |
JACOB A D, RAMSARAN A I, MOCLE A J,
et al. A compact head-mounted endoscope for in vivo calcium imaging in freely behaving mice[J].
Current Protocols in Neuroscience, 2018, 84(1): e51.
doi:10.1002/cpns.51
|
[16] |
BAGRAMYAN A. Lightweight 1-photon miniscope for imaging in freely behaving animals at subcellular resolution[J].
IEEE Photonics Technology Letters, 2020, 32(15): 909-912.
doi:10.1109/LPT.2020.3004283
|
[17] |
LIBERTI III W A, MARKOWITZ J E, PERKINS L N,
et al. Unstable neurons underlie a stable learned behavior[J].
Nature Neuroscience, 2016, 19(12): 1665-1671.
doi:10.1038/nn.4405
|
[18] |
COHEN Y, SHEN J, SEMU D,
et al. Hidden neural states underlie canary song syntax[J].
Nature, 2020, 582(7813): 539-544.
doi:10.1038/s41586-020-2397-3
|
[19] |
LIBERTI III W A, PERKINS L N, LEMAN D P,
et al. An open source, wireless capable miniature microscope system[J].
Journal of Neural Engineering, 2017, 14(4): 045001.
doi:10.1088/1741-2552/aa6806
|
[20] |
Alvarado J S, Goffinet J, Michael V,
et al. Neural dynamics underlying birdsong practice and performance[J].
Nature, 2021, 599(7886): 635-639.
|
[21] |
SHUMAN T, AHARONI D, CAI D J,
et al. Breakdown of spatial coding and interneuron synchronization in epileptic mice[J].
Nature Neuroscience, 2020, 23(2): 229-238.
doi:10.1038/s41593-019-0559-0
|
[22] |
BARBERA G, LIANG B, ZHANG L F,
et al. A wireless miniScope for deep brain imaging in freely moving mice[J].
Journal of Neuroscience Methods, 2019, 323: 56-60.
doi:10.1016/j.jneumeth.2019.05.008
|
[23] |
WANG Y ZH, MA ZH T, LI W ZH,
et al.. Cable-free brain imaging with miniature wireless microscopes[J].
Journal of Biomedical Optics, 2023, 28(2): 026503.
|
[24] |
SKOCEK O, NÖBAUER T, WEILGUNY L,
et al. High-speed volumetric imaging of neuronal activity in freely moving rodents[J].
Nature Methods, 2018, 15(6): 429-432.
doi:10.1038/s41592-018-0008-0
|
[25] |
PREVEDEL R, YOON Y G, HOFFMANN M,
et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy[J].
Nature Methods, 2014, 11(7): 727-730.
doi:10.1038/nmeth.2964
|
[26] |
NÖBAUER T, SKOCEK O, PERNÍA-ANDRADE A J,
et al. Video rate volumetric Ca
2+imaging across cortex using seeded iterative demixing (SID) microscopy[J].
Nature Methods, 2017, 14(8): 811-818.
doi:10.1038/nmeth.4341
|
[27] |
YANNY K, ANTIPA N, LIBERTI W,
et al. Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy[J].
Light:
Science&
Applications, 2020, 9: 171.
|
[28] |
BAGRAMYAN A, TABOURIN L, RASTQAR A,
et al. Focus-tunable microscope for imaging small neuronal processes in freely moving animals[J].
Photonics Research, 2021, 9(7): 1300-1309.
doi:10.1364/PRJ.418154
|
[29] |
SUPEKAR O D, SIAS A, HANSEN S R,
et al. Miniature structured illumination microscope for
in vivo3D imaging of brain structures with optical sectioning[J].
Biomedical Optics Express, 2022, 13(4): 2530-2541.
doi:10.1364/BOE.449533
|
[30] |
GONZALEZ W G, ZHANG H W, HARUTYUNYAN A,
et al. Persistence of neuronal representations through time and damage in the hippocampus[J].
Science, 2019, 365(6455): 821-825.
doi:10.1126/science.aav9199
|
[31] |
DE GROOT A, VAN DEN BOOM B J G, VAN GENDEREN R M,
et al. NINscope, a versatile miniscope for multi-region circuit investigations[J].
eLife, 2020, 9: e49987.
doi:10.7554/eLife.49987
|
[32] |
Silva A J. Miniaturized two-photon microscope: seeing clearer and deeper into the brain[J].
Light,
science&
applications, 2017, 6(8): e17104.
|
[33] |
WIRTSHAFTER H S, DISTERHOFT J F.
In vivomulti-day calcium imaging of CA1 hippocampus in freely moving rats reveals a high preponderance of place cells with consistent place fields[J].
Journal of Neuroscience, 2022, 42(22): 4538-4554.
doi:10.1523/JNEUROSCI.1750-21.2022
|
[34] |
AHARONI D, HOOGLAND T M. Circuit investigations with open-source miniaturized microscopes: past, present and future[J].
Frontiers in Cellular Neuroscience, 2019, 13: 141.
doi:10.3389/fncel.2019.00141
|
[35] |
蓝凯秋, 杨西斌, 徐宝腾, 等. 双色荧光成像在体微型显微镜[J]. 光子学报,2022,51(6):0618001.
doi:10.3788/gzxb20225106.0618001
LAN K Q, YANG X B, XU B T,
et al. In vivo, dual-color fluorescent imaging miniature microscope[J].
Acta Photonica Sinica, 2022, 51(6): 0618001. (in Chinese)
doi:10.3788/gzxb20225106.0618001
|
[36] |
SCOTT B B, THIBERGE S Y, GUO C Y,
et al. Imaging cortical dynamics in GCaMP transgenic rats with a head-mounted widefield macroscope[J].
Neuron, 2018, 100(5): 1045-1058.e5.
doi:10.1016/j.neuron.2018.09.050
|
[37] |
XUE Y J, DAVISON I G, BOAS D A,
et al. Single-shot 3D wide-field fluorescence imaging with a Computational Miniature Mesoscope[J].
Science Advances, 2020, 6(43): eabb7508.
doi:10.1126/sciadv.abb7508
|
[38] |
STERN A, JAVIDI B. Three-dimensional image sensing, visualization, and processing using integral imaging[J].
Proceedings of the IEEE, 2006, 94(3): 591-607.
doi:10.1109/JPROC.2006.870696
|
[39] |
邓慧, 吕国皎, 杨梅, 等. 基于掩膜板阵列的消串扰集成成像3D显示方法[J]. 液晶与显示,2022,37(5):592-597.
doi:10.37188/CJLCD.2022-0027
DENG H, LYU G J, YANG M,
et al. Crosstalk-free integral imaging 3D display method based on a mask array[J].
Chinese Journal of Liquid Crystals and Displays, 2022, 37(5): 592-597. (in Chinese)
doi:10.37188/CJLCD.2022-0027
|
[40] |
CONG L, WANG Z G, CHAI Y M,
et al. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (
Danio rerio)[J].
eLife, 2017, 6: e28158.
doi:10.7554/eLife.28158
|
[41] |
徐斌, 于迅博, 高鑫, 等. 一种视点均匀分布的桌面式光场显示系统[J]. 液晶与显示,2022,37(5):573-580.
doi:10.37188/CJLCD.2022-0041
XU B, YU X B, GAO X,
et al. Tabletop light field display system with uniform distribution of viewpoints[J].
Chinese Journal of Liquid Crystals and Displays, 2022, 37(5): 573-580. (in Chinese)
doi:10.37188/CJLCD.2022-0041
|
[42] |
于迅博, 李涵宇, 高鑫, 等. 基于预处理卷积神经网络提升3D光场显示视觉分辨率的方法[J]. 液晶与显示,2022,37(5):549-554.
doi:10.37188/CJLCD.2022-0044
YU X B, LI H Y, GAO X,
et al. 3D light field display with improved visual resolution based on pre-processing convolutional neural network[J].
Chinese Journal of Liquid Crystals and Displays, 2022, 37(5): 549-554. (in Chinese)
doi:10.37188/CJLCD.2022-0044
|
[43] |
TANIDA J, KUMAGAI T, YAMADA K,
et al. Thin observation module by bound optics (TOMBO): concept and experimental verification[J].
Applied Optics, 2001, 40(11): 1806-1813.
doi:10.1364/AO.40.001806
|
[44] |
MCCALL B, OLSEN R J, NELLES N J,
et al. Evaluation of a miniature microscope objective designed for fluorescence array microscopy detection of
Mycobacterium tuberculosis[J].
Archives of Pathology&
Laboratory Medicine, 2014, 138(3): 379-389.
|
[45] |
ANTIPA N, KUO G, HECKEL R,
et al. DiffuserCam: lensless single-exposure 3D imaging[J].
Optica, 2018, 5(1): 1-9.
doi:10.1364/OPTICA.5.000001
|
[46] |
RYNES M L, SURINACH D A, LINN S,
et al. Miniaturized head-mounted microscope for whole-cortex mesoscale imaging in freely behaving mice[J].
Nature Methods, 2021, 18(4): 417-425.
doi:10.1038/s41592-021-01104-8
|
[47] |
WU J M, GUO Y D, DENG CH,
et al. An integrated imaging sensor for aberration-corrected 3D photography[J].
Nature, 2022, 612(7938): 62-71.
doi:10.1038/s41586-022-05306-8
|