Citation: | CHEN Yi, SUN Jun-jie, YU Jing-hua, YAO Zhi-huan, ZHANG Yi-wen, YU De-yang, HE Yang, ZHANG Kuo, PAN Qi-kun, CHEN Fei. Review of the cavity-design of high-energy thin-disk laser multi-pass amplifiers[J].Chinese Optics, 2023, 16(5): 996-1009.doi:10.37188/CO.2023-0009 |
In order to clarify the cavity design methods of thin-disk multi-pass amplifiers, we summarize the different types of thin-disk multi-pass amplifiers and concludes that there are four fundamental design concepts: (1) 4
[1] |
张世达, 耿乙迦. 碲化铋倏逝场锁模器件的超快光纤 器[J]. 中国光学,2022,15(3):433-442.
doi:10.37188/CO.2021-0216
ZHANG SH D, GENG Y J. Ultrafast fiber laser based on bismuth telluride evanescent field mode-locked device[J].
Chinese Optics, 2022, 15(3): 433-442. (in Chinese)
doi:10.37188/CO.2021-0216
|
[2] |
徐飞, 潘其坤, 陈飞, 等. 中红外Fe
2+: ZnSe 器研究进展[J]. 中国光学,2021,14(3):458-469.
doi:10.37188/CO.2020-0180
XU F, PAN Q K, CHEN F,
et al. Development progress of Fe2+: ZnSe lasers[J].
Chinese Optics, 2021, 14(3): 458-469. (in Chinese)
doi:10.37188/CO.2020-0180
|
[3] |
牛娜, 窦微, 浦双双, 等. 蓝光二极管抽运Pr: YLF腔内倍频连续深紫外 器[J]. 中国光学,2021,14(6):1395-1399.
doi:10.37188/CO.2021-0077
NIU N, DOU W, PU SH SH,
et al. Continuous deep ultraviolet laser by intracavity frequency doubling of blue laser diode pumped Pr: YLF[J].
Chinese Optics, 2021, 14(6): 1395-1399. (in Chinese)
doi:10.37188/CO.2021-0077
|
[4] |
NUBBEMEYER T, KAUMANNS M, UEFFING M,
et al. 1kW, 200 mJ picosecond thin-disk laser system[J].
Optics Letters, 2017, 42(7): 1381-1384.
doi:10.1364/OL.42.001381
|
[5] |
KRÖTZ P, WANDT C, GREBING C,
et al. .Towards 2 kW, 20 kHz ultrafast thin-disk based regenerative amplifiers[C].
Advanced Solid State Lasers 2019, Optica Publishing Group, 2019: ATh1A. 8.
|
[6] |
MÜLLER D, ERHARD S, RONSIN O,
et al. .Thin disk multi-pass amplifier[C].
Advanced Solid-State Photonics 2003, Optica Publishing Group, 2003: 278.
|
[7] |
LOESER M, SIEBOLD M, ROESER F,
et al. .High energy CPA-free picosecond Yb: YAG amplifier[C].
Advanced Solid-State Photonics 2012, Optica Publishing Group, 2012: AM4A. 16.
|
[8] |
FRIEBEL F, PELLEGRINA A, PAPADOPOULOS D N,
et al. .57-mJ 20-Hz multipass laser amplifier based on Yb: CaF
2crystals[C].
Advanced Solid State Lasers 2013, Optica Publishing Group, 2013: ATu3A. 21.
|
[9] |
ZAPATA L E, LIN H, CALENDRON A L,
et al. Cryogenic Yb: YAG composite-thin-disk for high energy and average power amplifiers[J].
Optics Letters, 2015, 40(11): 2610-2613.
doi:10.1364/OL.40.002610
|
[10] |
SIEBOLD M, LOESER M, ROESER F,
et al. High-energy, ceramic-disk Yb: LuAG laser amplifier[J].
Optics Express, 2012, 20(20): 21992-22000.
doi:10.1364/OE.20.021992
|
[11] |
FRIEBEL F, PELLEGRINA A, PAPADOPOULOS D N,
et al. Diode-pumped Yb: CaF
2multipass amplifier producing 50 mJ with dynamic analysis for high repetition rate operation[J].
Applied Physics B, 2014, 117(2): 597-603.
doi:10.1007/s00340-014-5872-4
|
[12] |
ZWILICH M, EWERS B. Coherent beam combining of multipass thin-disk lasers with active phase control[J].
OSA Continuum, 2020, 3(11): 3176-3186.
doi:10.1364/OSAC.404658
|
[13] |
PEREVEZENTSEV E, KUZNETSOV I, MUKHIN I,
et al. Matrix multi-pass scheme disk amplifier[J].
Applied Optics, 2017, 56(30): 8471-8476.
doi:10.1364/AO.56.008471
|
[14] |
SPEISER J. Thin disk lasers: history and prospects[J].
Proceedings of SPIE, 2016, 9893: 98930L.
|
[15] |
OCHI Y, NAGASHIMA K, MARUYAMA M,
et al. .Effective multi-pass amplification system for Yb: YAG thin-disk laser[C].
Laser Applications Conference 2017, Optica Publishing Group, 2017: JTh2A. 31.
|
[16] |
KÖRNER J, HEIN J, KALUZA M C. Compact aberration-free relay-imaging multi-pass layouts for high-energy laser amplifiers[J].
Applied Sciences, 2016, 6(11): 353.
doi:10.3390/app6110353
|
[17] |
SMRŽ M, MUŽÍK J, NOVÁK O,
et al. Progress in kW-class picosecond thin-disk lasers development at the HiLASE[J].
Proceedings of SPIE, 2016, 9726: 972617.
|
[18] |
FAN T Y, RIPIN D J, AGGARWAL R L,
et al. Cryogenic Yb
3+-doped solid-state lasers[J].
IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 448-459.
doi:10.1109/JSTQE.2007.896602
|
[19] |
KOERNER J, VORHOLT C, LIEBETRAU H,
et al. Measurement of temperature-dependent absorption and emission spectra of Yb: YAG, Yb: LuAG, and Yb: CaF
2between 20 °C and 200 °C and predictions on their influence on laser performance[J].
Journal of the Optical Society of America B, 2012, 29(9): 2493-2502.
doi:10.1364/JOSAB.29.002493
|
[20] |
CALENDRON A L, ZAPATA L E, ÇANKAYA H,
et al. .Optimized temperature/bandwidth operation of cryogenic Yb: YAG composite thin-disk laser amplifier[C].
High Intensity Lasers and High Field Phenomena 2014, Optica Publishing Group, 2014: JW2A. 10.
|
[21] |
ANTOGNINI A, SCHUHMANN K, AMARO F D,
et al. Thin-disk Yb: YAG oscillator-amplifier laser, ASE, and effective Yb: YAG lifetime[J].
IEEE Journal of Quantum Electronics, 2009, 45(8): 993-1005.
doi:10.1109/JQE.2009.2014881
|
[22] |
SCHUHMANN K, ANTOGNINI A, KIRCH K,
et al. .Thin-disk laser for the measurement of the radii of the proton and the alpha-particle[C].
Advanced Solid State Lasers 2013, Optica Publishing Group, 2013: ATu3A. 46.
|
[23] |
TÜMMLER J, JUNG R, STIEL H,
et al. High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy[J].
Optics Letters, 2009, 34(9): 1378-1380.
doi:10.1364/OL.34.001378
|
[24] |
SCHUHMANN K, KIRCH K, MARSZALEK M,
et al. Multipass amplifiers with self-compensation of the thermal lens[J].
Applied Optics, 2018, 57(35): 10323-10333.
doi:10.1364/AO.57.010323
|
[25] |
ZEYEN M, ANTOGNINI A, KIRCH K,
et al. Compact 20-pass thin-disk amplifier insensitive to thermal lensing[J].
Proceedings of SPIE, 2019, 10896: 108960X.
|
[26] |
SCHUHMANN K, KIRCH K, KNECHT A,
et al. Passive alignment stability and auto-alignment of multipass amplifiers based on Fourier transforms[J].
Applied Optics, 2019, 58(11): 2904-2912.
doi:10.1364/AO.58.002904
|
[27] |
NEGEL J P, VOSS A, AHMED M A,
et al. 1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses[J].
Optics Letters, 2013, 38(24): 5442-5445.
doi:10.1364/OL.38.005442
|
[28] |
SCHUHMANN K, AHMED M A, ANTOGNINI A,
et al. Thin-disk laser multi-pass amplifier[J].
Proceedings of SPIE, 2015, 9342: 93420U.
|
[29] |
SCHUHMANN K, KIRCH K, NEZ F,
et al. Thin-disk laser scaling limit due to thermal lens induced misalignment instability[J].
Applied Optics, 2016, 55(32): 9022-9032.
doi:10.1364/AO.55.009022
|
[30] |
SCHUHMANN K, KIRCH K, ANTOGNINI A. Multi-pass resonator design for energy scaling of mode-locked thin-disk lasers[J].
Proceedings of SPIE, 2017, 10082: 100820J.
|
[31] |
SCHUHMANN K.
The thin-disk laser for the 2S – 2P measurement in muonic helium[D]. Zurich: ETH Zurich, 2017.
|
[32] |
NEGEL J P, VOSS A, AHMED M A,
et al. .Thin-disk multipass amplifier for ultrashort pulses with an output power of 264 W[C].
Advanced Solid State Lasers 2013, Optica Publishing Group, 2013: AF3A. 9.
|
[33] |
NEGEL J P, VOSS A, AHMED M A,
et al. .1.3 kW average output power Yb: YAG thin-disk multipass amplifier for multi-mJ picosecond laser pulses[C].
CLEO: Science and Innovations 2014, Optica Publishing Group, 2014: STu1O. 2.
|
[34] |
NEGEL J P, LOESCHER A, VOSS A,
et al. Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm[J].
Optics Express, 2015, 23(16): 21064-21077.
doi:10.1364/OE.23.021064
|
[35] |
LOESCHER A, NEGEL J P, GRAF T,
et al. Radially polarized emission with 635 W of average power and 2.1 mJ of pulse energy generated by an ultrafast thin-disk multipass amplifier[J].
Optics Letters, 2015, 40(24): 5758-5761.
doi:10.1364/OL.40.005758
|
[36] |
NEGEL J P, LOESCHER A, BAUER D,
et al. .Second generation thin-disk multipass amplifier delivering picosecond pulses with 2 kW of average output power[C].
Advanced Solid State Lasers 2016, Optica Publishing Group, 2016: ATu4A. 5.
|
[37] |
NEGEL J P, LOESCHER A, DANNECKER B,
et al. Thin-disk multipass amplifier for fs pulses delivering 400 W of average and 2.0 GW of peak power for linear polarization as well as 235 W and 1.2 GW for radial polarization[J].
Applied Physics B, 2017, 123(5): 156.
doi:10.1007/s00340-017-6739-2
|
[38] |
RÖCKER C, LOESCHER A, BIENERT F,
et al. Ultrafast green thin-disk laser exceeding 1.4 kW of average power[J].
Optics Letters, 2020, 45(19): 5522-5525.
doi:10.1364/OL.403781
|
[39] |
RÖCKER C, LOESCHER A, NEGEL J P,
et al. Direct amplification of sub-300fs pulses in a versatile thin-disk multipass amplifier[J].
Optics Communications, 2020, 460: 125159.
doi:10.1016/j.optcom.2019.125159
|
[40] |
DIETZ T, JENNE M, BAUER D,
et al. Ultrafast thin-disk multi-pass amplifier system providing 1.9 kW of average output power and pulse energies in the 10 mJ range at 1 ps of pulse duration for glass-cleaving applications[J].
Optics Express, 2020, 28(8): 11415-11423.
doi:10.1364/OE.383926
|
[41] |
HERKOMMER C, KRÖTZ P, JUNG R,
et al. Ultrafast thin-disk multipass amplifier with 720 mJ operating at kilohertz repetition rate for applications in atmospheric research[J].
Optics Express, 2020, 28(20): 30164-30173.
doi:10.1364/OE.404185
|
[42] |
KEPPLER S, WANDT C, HORNUNG M,
et al. Multipass amplifiers of POLARIS[J].
Proceedings of SPIE, 2013, 8780: 87800I.
doi:10.1117/12.2019248
|
[43] |
JUNG R, TÜMMLER J, NUBBEMEYER T,
et al. .Two-channel thin-disk laser for high pulse energy[C].
Advanced Solid State Lasers 2015, Optica Publishing Group, 2015: AW3A. 7.
|