Citation: | LI Hong, ZHU Ying-xin, ZHOU Ya-ni, WANG Hai-bo, DONG Ming-li, ZHU Lian-qing. Advances in optical fiber tweezer technology based on hetero-core fiber[J]. Chinese Optics, 2023, 16(6): 1293-1304. doi: 10.37188/CO.2023-0016 |
Optical fiber tweezers are widely used in biochemical analysis, life sciences, and other fields due to their simple structure, flexible operation, and compact size. The hetero-core structure of the optical fiber probe possesses inherent advantages in near-field evanescent wave optical trapping force, core beam coupling transmission, and cross-synergistic application of microfluidic technology, which can realize the functions of cell and subcellular particle collection and transportation, and can significantly improve the three-dimensional particle trapping capability as well as dynamic manipulation level. In this paper, the structural characteristics and application technology research progress of optical fiber tweezers based on different core structures are reviewed. This paper sorts and compares key technologies, including probe preparation, laser source, and coupling mode, in hetero-core optical fiber tweezers systems. It also summarizes and provides a perspective on the role and development of hetero-core fibers with different structures in optical fiber tweezers.
[1] |
ASHKIN A. Trapping of atoms by resonance radiation pressure[J]. Physical Review Letters, 1978, 40(12): 729-732. doi: 10.1103/PhysRevLett.40.729
|
[2] |
TOKONAMI S. External-field-induced assembly for biological analytical chemistry[J]. Analytical Sciences, 2021, 37(3): 395-396. doi: 10.2116/analsci.highlights2103
|
[3] |
蔡宸, 张韫宏. 光镊技术在气溶胶物理化学表征中的应用[J]. 中国光学,2017,10(5):641-655. doi: 10.3788/co.20171005.0641
CAI CH, ZHANG Y H. Application of optical tweezers technology in physical chemistry characterization of aerosol[J]. Chinese Optics, 2017, 10(5): 641-655. (in Chinese) doi: 10.3788/co.20171005.0641
|
[4] |
STOEV I D, SEELBINDER B, ERBEN E, et al. Highly sensitive force measurements in an optically generated, harmonic hydrodynamic trap[J]. eLight, 2021, 1(1): 1-9.
|
[5] |
FILIPPI J, DI GIUSEPPE D, CASTI P, et al. Exploiting spectral information in Opto-Electronic Tweezers for cell classification and drug response evaluation[J]. Sensors and Actuators B:Chemical, 2022, 368: 132200. doi: 10.1016/j.snb.2022.132200
|
[6] |
GAYATHRI R, KAR S, NAGAI M, et al. Single-cell patterning: a new frontier in bioengineering[J]. Materials Today Chemistry, 2022, 26: 101021. doi: 10.1016/j.mtchem.2022.101021
|
[7] |
李银妹, 王浩威, 龚雷. 光镊技术在生命科学研究中的应用现状[J]. 生物学杂志,2019,36(3):1-8.
LI Y M, WANG H W, GONG L. Current applied researches of optical tweezers in biology[J]. Journal of Biology, 2019, 36(3): 1-8. (in Chinese)
|
[8] |
LIU Y, DING H, LI J, et al. Light-driven single-cell rotational adhesion frequency assay[J]. elight, 2022, 2(1): 1-11.
|
[9] |
LIU ZH H, SHA CH Y, ZHANG Y, et al. Improved photopolymerization for fabricating fiber optical tweezers[J]. Optics Communications, 2022, 508: 127801. doi: 10.1016/j.optcom.2021.127801
|
[10] |
LIU CH, LIU ZH H. Design of micro-optical tweezers[J]. Proceedings of SPIE, 2011, 8202: 820212. doi: 10.1117/12.906996
|
[11] |
LIAO C, XIONG C, ZHAO J, et al. Design and realization of 3D printed fiber-tip microcantilever probes applied to hydrogen sensing[J]. Light: Advanced Manufacturing, 2022, 3(1): 3-13.
|
[12] |
SUN X, LEI Z, ZHONG H, et al. A quasi-3D Fano resonance cavity on optical fiber end-facet for high signal-to-noise ratio dip-and-read surface plasmon sensing[J]. Light: Advanced Manufacturing, 2022, 3(4): 665-675.
|
[13] |
ZHANG Y, LI Y, ZHANG Y X, et al. HACF-based optical tweezers available for living cells manipulating and sterile transporting[J]. Optics Communications, 2018, 427: 563-566. doi: 10.1016/j.optcom.2018.07.022
|
[14] |
LIU ZH H, WANG L, ZHANG Y, et al. Optical funnel for living cells trap[J]. Optics Communications, 2019, 431: 196-198. doi: 10.1016/j.optcom.2018.09.023
|
[15] |
ANASTASIADI G, LEONARD M, PATERSON L, et al. Fabrication and characterization of machined multi-core fiber tweezers for single cell manipulation[J]. Optics Express, 2018, 26(3): 3557-3567. doi: 10.1364/OE.26.003557
|
[16] |
LEE S R, KIM J, LEE S, et al. All-silica fiber Bessel-like beam generator and its applications in longitudinal optical trapping and transport of multiple dielectric particles[J]. Optics Express, 2010, 18(24): 25299-25305. doi: 10.1364/OE.18.025299
|
[17] |
TANG X Y, ZHANG Y, ZHANG Y X, et al. All-fiber active tractor beam generator and its application[J]. Journal of Lightwave Technology, 2020, 38(6): 1420-1426. doi: 10.1109/JLT.2019.2953335
|
[18] |
ZHANG Y, LIU ZH H, YANG J, et al. Four-core optical fiber micro-hand[J]. Journal of Lightwave Technology, 2012, 30(10): 1487-1491. doi: 10.1109/JLT.2012.2187772
|
[19] |
FOOLADI E, SADEGHI M, ADELPOUR Z, et al. Performance improvement of a plasmonic tapered twin–core fiber optical tweezers[J]. Optik, 2021, 245: 167656. doi: 10.1016/j.ijleo.2021.167656
|
[20] |
HOU G H, LIU ZH H. The simulation research of multi-core optical fiber near-field optical tweezers[J]. Proceedings of SPIE, 2011, 8202: 82020K.
|
[21] |
LIU ZH H, GUO CH K, YANG J, et al. Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application[J]. Optics Express, 2006, 14(25): 12510-12516. doi: 10.1364/OE.14.012510
|
[22] |
刘福禄, 张钰民, 孟凡勇, 等. 基于端面镀膜和基底增敏的级联法布里-珀罗光纤温度传感器[J]. 仪器仪表学报,2020,41(11):105-111.
LIU F L, ZHANG Y M, MENG F Y, et al. Fiber temperature sensor based on the cascaded Fabry-Perot with end face coating and substrate sensitization[J]. Chinese Journal of Scientific Instrument, 2020, 41(11): 105-111. (in Chinese)
|
[23] |
贺健康, 张立超, 才玺坤, 等. 离子束溅射制备GdF3光学薄膜沉积速率分布特性[J]. 中国光学,2016,9(3):356-363. doi: 10.3788/co.20160903.0356
HE J K, ZHANG L CH, CAI X K, et al. Deposition rate distribution of GdF3 optical coating prepared by ion beam sputtering[J]. Chinese Optics, 2016, 9(3): 356-363. (in Chinese) doi: 10.3788/co.20160903.0356
|
[24] |
宁哲达, 王一晴, 陈天天, 等. 磁控溅射沉积银薄膜/涂层的研究进展[J]. 稀有金属材料与工程,2022,51(12):4773-4782.
NING ZH D, WANG Y Q, CHEN T T, et al. Research progress of silver films/coatings deposited by magnetron sputtering[J]. Rare Metal Materials and Engineering, 2022, 51(12): 4773-4782. (in Chinese)
|
[25] |
ZHANG X T, YUAN T T, YUAN Y G, et al. Twin-core fiber end polish technique for particle trapping[J]. Proceedings of SPIE, 2015, 9655: 96551V.
|
[26] |
YUAN L B, LIU ZH H, YANG J, et al. Two-beam optical tweezers built by a two-core fiber[J]. Proceedings of SPIE, 2008, 7004: 70040R. doi: 10.1117/12.785205
|
[27] |
LIU ZH H, ZHANG Y X, ZHANG Y, et al.. All-fiber self-accelerating Bessel-like beam for optical trapping application[C]. Optics and the Brain 2015, Optica Publishing Group, 2015: JT3A. 2.
|
[28] |
XIE S, PENNETTA R, RUSSELL P S J. Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber[J]. Optica, 2016, 3(3): 277-282. doi: 10.1364/OPTICA.3.000277
|
[29] |
GHARAATI A R, ELAHI P, JAFARI M. Calculation of temperature distribution in eccentric multi core diode pumped fiber lasers by green function method[J]. Acta Physica Polonica A, 2009, 116(4): 566-569. doi: 10.12693/APhysPolA.116.566
|
[30] |
孙林, 刘宁, 蔡轶, 等. 多芯光纤通信海缆的能效理论及系统参数优化[J]. 光学学报,2022,42(15):1506005. doi: 10.3788/AOS202242.1506005
SUN L, LIU N, CAI Y, et al. Power efficiency theory and system parameter optimization for multicore fiber-based submarine cables[J]. Acta Optica Sinica, 2022, 42(15): 1506005. (in Chinese) doi: 10.3788/AOS202242.1506005
|
[31] |
MORANT M, LLORENTE R. Performance analysis of carrier-aggregated multiantenna 4 × 4 MIMO LTE-A fronthaul by spatial multiplexing on multicore fiber[J]. Journal of Lightwave Technology, 2018, 36(2): 594-600. doi: 10.1109/JLT.2017.2786582
|
[32] |
MACHO A, MORANT M, LLORENTE R. Experimental evaluation of nonlinear crosstalk in multi-core fiber[J]. Optics Express, 2015, 23(14): 18712-18720. doi: 10.1364/OE.23.018712
|
[33] |
刘建霞, 薛丽, 陈宫傣, 等. 偏心光纤倏逝场传感灵敏度的研究[J].
与光电子学进展,2016,53(7):071301.
LIU J X, XUE L, CHEN G D, et al. Sensitivity of evanescent field sensors based on eccentric core optical fiber[J]. Laser &Optoelectronics Progress, 2016, 53(7): 071301. (in Chinese)
|
[34] |
张世达, 耿乙迦. 碲化铋倏逝场锁模器件的超快光纤
器[J]. 中国光学,2022,15(3):433-442. doi: 10.37188/CO.2021-0216
ZHANG SH D, GENG Y J. Ultrafast fiber laser based on bismuth telluride evanescent field mode-locked device[J]. Chinese Optics, 2022, 15(3): 433-442. (in Chinese) doi: 10.37188/CO.2021-0216
|
[35] |
LIU J X, YUAN L B. Evanescent field characteristics of eccentric core optical fiber for distributed sensing[J]. Journal of the Optical Society of America A, 2014, 31(3): 475-479. doi: 10.1364/JOSAA.31.000475
|
[36] |
BOULOUMIS T D, NIC CHORMAIC S. From far-field to near-field micro- and nanoparticle optical trapping[J]. Applied Sciences, 2020, 10(4): 1375. doi: 10.3390/app10041375
|
[37] |
LEITZ K H, QUENTIN U, ALEXEEV I, et al. Process investigations of optical trap assisted direct-write microsphere near-field nanostructuring[J]. CIRP Annals, 2012, 61(1): 207-210. doi: 10.1016/j.cirp.2012.03.047
|
[38] |
苑立波. 纤端光操纵: 光镊·光手·光枪[J]. 光学与光电技术,2020,18(2):1-6.
YUAN L B. Specialty optical fibers for micro particle manipulation: optical tweezers, hands and gun[J]. Optics &Optoelectronic Technology, 2020, 18(2): 1-6. (in Chinese)
|
[39] |
马光辉, 于贺, 刘宇乾, 等. 金属纳米表面等离子激元的共振辐射增强研究[J].
与光电子学进展,2018,55(4):042601.
MA G H, YU H, LIU Y Q, et al. Resonance radiation enhancement of metal nanometer surface plasmons[J]. Laser &Optoelectronics Progress, 2018, 55(4): 042601. (in Chinese)
|
[40] |
LV S J, DU Y P, WU F T, et al. Review on LSPR assisted photocatalysis: effects of physical fields and opportunities in multifield decoupling[J]. Nanoscale Advances, 2022, 4(12): 2608-2631. doi: 10.1039/D2NA00140C
|
[41] |
TANDON B, AGRAWAL A, HEO S, et al. Competition between depletion effects and coupling in the Plasmon modulation of doped metal oxide nanocrystals[J]. Nano Letters, 2019, 19(3): 2012-2019. doi: 10.1021/acs.nanolett.9b00079
|
[42] |
PELLAS V, HU D, MAZOUZI Y, et al. Gold nanorods for LSPR biosensing: synthesis, coating by silica, and bioanalytical applications[J]. Biosensors, 2020, 10(10): 146. doi: 10.3390/bios10100146
|
[43] |
LIBERALE C, MINZIONI P, CRISTIANI I. All optical 3-D trapping through a single-fiber tweezer[C]. The European Conference on Lasers and Electro-Optics, Optica Publishing Group, 2007: CL2_2.
|
[44] |
申泽, 成煜, 邓洪昌, 等. 鸟喙形环形芯光纤光镊粒子捕获受力分析[J]. 光学学报,2021,41(18):1808001. doi: 10.3788/AOS202141.1808001
SHEN Z, CHENG Y, DENG H CH, et al. Analysis of trapping force of beak-shaped optical tweezers with annular core fibers for particles[J]. Acta Optica Sinica, 2021, 41(18): 1808001. (in Chinese) doi: 10.3788/AOS202141.1808001
|
[45] |
LIU ZH H, WANG L, ZHANG Y, et al. Particle size measurement using a fibre-trap-based interference approach[J]. Optics Communications, 2020, 471: 125839. doi: 10.1016/j.optcom.2020.125839
|
[46] |
张乃倩, 方群. 基于微流控系统的单细胞代谢物分析技术的研究进展[J]. 分析化学,2021,49(11):1779-1791.
ZHANG N Q, FANG Q. Progress of single-cell metabolite analysis technology based on microfluidic system[J]. Chinese Journal of Analytical Chemistry, 2021, 49(11): 1779-1791. (in Chinese)
|
[47] |
李钢敏, 李致远, 李正冉, 等. 基于表面等离子体共振的高灵敏度光纤微流控芯片[J]. 中国
,2021,48(1):0106002. doi: 10.3788/CJL202148.0106002
LI G M, LI ZH Y, LI ZH R, et al. High-sensitivity optical-fiber microfluidic chip based on surface Plasmon resonance[J]. Chinese Journal of Lasers, 2021, 48(1): 0106002. (in Chinese) doi: 10.3788/CJL202148.0106002
|
[48] |
ZHAI J, YI SH H, JIA Y W, et al. Cell-based drug screening on microfluidics[J]. TrAC Trends in Analytical Chemistry, 2019, 117: 231-241. doi: 10.1016/j.trac.2019.05.018
|
[49] |
王志乐, 王著元, 宗慎飞, 等. 微流控SERS芯片及其生物传感应用[J]. 中国光学,2018,11(3):513-530. doi: 10.3788/co.20181103.0513
WANG ZH L, WANG ZH Y, ZONG SH F, et al. Microfluidic SERS chip and its biosensing applications[J]. Chinese Optics, 2018, 11(3): 513-530. (in Chinese) doi: 10.3788/co.20181103.0513
|
[50] |
FALLAHI H, ZHANG J, PHAN H P, et al. Flexible microfluidics: fundamentals, recent developments, and applications[J]. Micromachines, 2019, 10(12): 830. doi: 10.3390/mi10120830
|
[51] |
KRITZINGER A, FORBES A, FORBES P B C. Optical trapping and fluorescence control with vectorial structured light[J]. Scientific Reports, 2022, 12(1): 17690. doi: 10.1038/s41598-022-21224-1
|
[52] |
PAN X J, WU J Y, LI ZH L, et al. Laguerre-Gaussian mode purity of Gaussian vortex beams[J]. Optik, 2021, 230: 166320. doi: 10.1016/j.ijleo.2021.166320
|
[53] |
KHONINA S N, STRILETZ A S, KOVALEV A A, et al. Propagation of laser vortex beams in a parabolic optical fiber[J]. Proceedings of SPIE, 2010, 7523: 75230B.
|
[54] |
WANG J H, CHEN R SH, YAO J N, et al. Random distributed feedback fiber laser generating cylindrical vector beams[J]. Physical Review Applied, 2019, 11(4): 044051. doi: 10.1103/PhysRevApplied.11.044051
|
[55] |
LIU ZH H, WANG L, LIANG P B, et al. Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment[J]. Optics Letters, 2013, 38(14): 2617-2620. doi: 10.1364/OL.38.002617
|
[56] |
WU H, JIANG CH L, REN A N, et al. Single-fiber optical tweezers for particle trapping and axial reciprocating motion using dual wavelength and dual mode[J]. Optics Communications, 2022, 517: 128333. doi: 10.1016/j.optcom.2022.128333
|
[57] |
ZHANG Y, ZHAO L, CHEN Y H, et al. Single optical tweezers based on elliptical core fiber[J]. Optics Communications, 2016, 365: 103-107. doi: 10.1016/j.optcom.2015.11.076
|