Citation: | XIE Feng, ZHU Shuo-long, ZHANG Zhen-rong. Design of an optical power splitter with adjustable split ratio[J].Chinese Optics, 2023, 16(5): 1121-1128.doi:10.37188/CO.2023-0038 |
Traditional analytical theory design scheme faces problems, such as high computational complexity, limited analytical solution, and high time-consumption. To cambat these issues, based on the design of traditional optical devices, a scheme for designing an optical power splitter with adjustable split ratio according to the reverse design method is proposed. In a compact region of 1.92 μm×1.92 μm, Ge2Sb2Se4Te1(GSST) is introduced to change the refractive index distribution of the device. The direct binary search algorithm is utilized to search the optimal state distribution of GSST in crystalline and amorphous states. A T-shaped optical power splitter with adjustable split ratio is designed and implemented for the same device structure. The initial structure, split ratio, phase change material region state distribution, manufacturing tolerance, and light field distribution of the device are simulated and analyzed. The results show the minimum relative errors of the designed optical power splitters with three splitting ratios of 1∶1, 1.5∶1 and 2∶1 between wavelengths 1530 nm and 1560 nm are 0.004%, 0.14% and 0.22%, respectively. The maximum fluctuations of the transmission curve in the manufacturing tolerance range are 0.95 dB, 1.21 dB and 1.18 dB, respectively. The splitter has a compact structure and great potential for applications in optical communication and information processing.
[1] |
TAHERSIMA M H, KOJIMA K, KOIKE-AKINO T,
et al. Deep neural network inverse design of integrated photonic power splitters[J].
Scientific Reports, 2019, 9(1): 1368.
doi:10.1038/s41598-018-37952-2
|
[2] |
YUAN H, WU J G, ZHANG J P,
et al. Non-volatile programmable ultra-small photonic arbitrary power splitters[J].
Nanomaterials, 2022, 12(4): 669.
doi:10.3390/nano12040669
|
[3] |
XIE H C, LIU Y J, SUN W Z,
et al. Inversely designed 1× 4 power splitter with arbitrary ratios at 2-μm spectral band[J].
IEEE Photonics Journal, 2018, 10(4): 2700506.
|
[4] |
杨知虎, 傅佳慧, 张玉萍, 等. 基于深度学习的Fano共振超材料设计[J]. 中国光学(中英文),2023,16(4):816-823.
YANG ZH H, FU J H, ZHANG Y P,
et al. Fano resonances design of metamaterials based on deep learning[J].
Chinese Optics, 2023, 16(4): 816-823. (in Chinese)
|
[5] |
YUAN H, WANG ZH H, ZHANG J P,
et al. Ultra-compact programmable arbitrary power splitter[J].
Proceedings of SPIE, 2021, 12062: 1206207.
|
[6] |
LIU Y J, WANG Z, LIU Y L,
et al. Ultra-compact mode-division multiplexed photonic integrated circuit for dual polarizations[J].
Journal of Lightwave Technology, 2021, 39(18): 5925-5932.
doi:10.1109/JLT.2021.3092941
|
[7] |
MA H S, YANG J B, HUANG J,
et al. Inverse-designed single-mode and multi-mode nanophotonic waveguide switches based on hybrid silicon-Ge
2Sb
2Te
5platform[J].
Results in Physics, 2021, 26: 104384.
doi:10.1016/j.rinp.2021.104384
|
[8] |
WANG Q, CHUMAK A V, PIRRO P. Inverse-design magnonic devices[J].
Nature Communications, 2021, 12(1): 2636.
doi:10.1038/s41467-021-22897-4
|
[9] |
XIE H CH, LIU Y J, WANG Y H,
et al. An ultra-compact 3-dB power splitter for three modes based on pixelated meta-structure[J].
IEEE Photonics Technology Letters, 2020, 32(6): 341-344.
doi:10.1109/LPT.2020.2975128
|
[10] |
LU L L Z, LIU D M, ZHOU F Y,
et al. Inverse-designed single-step-etched colorless 3 dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures[J].
Optics Letters, 2016, 41(21): 5051-5054.
doi:10.1364/OL.41.005051
|
[11] |
严德贤, 陈欣怡, 封覃银, 等. 二氧化钒辅助的可切换多功能超材料结构研究[J]. 中国光学(中英文),2023,16(3):514-522.
doi:10.37188/CO.2022-0193
YAN D X, CHEN X Y, FENG Q Y,
et al. A vanadium dioxide-assisted switchable multifunctional metamaterial structure[J].
Chinese Optics, 2023, 16(3): 514-522. (in Chinese)
doi:10.37188/CO.2022-0193
|
[12] |
张晓斌, 韩伟娜. 角度复用的光学加密超表面的超快 嵌套加工方法研究[J]. 中国光学(中英文),2023,16(4):889-903.
ZHANG X B, HAN W N. Ultrafast laser nested machining method for angle-multiplexed optically encrypted metasurface[J].
Chinese Optics, 2023, 16(4): 889-903. (in Chinese)
|
[13] |
PENG ZH, FENG J B, YUAN H,
et al. A non-volatile tunable ultra-compact silicon photonic logic gate[J].
Nanomaterials, 2022, 12(7): 1121.
doi:10.3390/nano12071121
|
[14] |
MA H S, HUANG J, ZHANG K W,
et al. Inverse-designed arbitrary-input and ultra-compact 1× N power splitters based on high symmetric structure[J].
Scientific Reports, 2020, 10(1): 11757.
doi:10.1038/s41598-020-68746-0
|
[15] |
ARUNACHALAM M, RAJU S. Power efficient space division multiplexing–wavelength division multiplexing system using multimode EDFA with elevated refractive index profile[J].
International Journal of Communication Systems, 2022, 35(6): e5065.
|
[16] |
FERNÁNDEZ DE CABO R, GONZÁLEZ-ANDRADE D, CHEBEN P,
et al. High-performance on-chip silicon beamsplitter based on subwavelength metamaterials for enhanced fabrication tolerance[J].
Nanomaterials, 2021, 11(5): 1304.
doi:10.3390/nano11051304
|
[17] |
LU M J, DENG CH Y, ZHENG P F,
et al. Ultra-compact TE-mode-pass power splitter based on subwavelength gratings and hybrid plasmonic waveguides on SOI platform[J].
Optics Communications, 2021, 498: 127250.
doi:10.1016/j.optcom.2021.127250
|
[18] |
MISCUGLIO M, MENG J W, YESILIURT O,
et
al. . Artificial synapse with mnemonic functionality using GSST-based photonic integrated memory[C].
Proceedings of 2020
International
Applied
Computational
Electromagnetics
Society
Symposium. IEEE, 2020: 1-3.
|
[19] |
ZHANG Y F, CHOU J B, LI J Y,
et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics[J].
Nature Communications, 2019, 10(1): 4279.
doi:10.1038/s41467-019-12196-4
|