Citation: | HU Jin-gao-wa, ZHAO Shang-nan, WANG Ling-jie, YE Hao-kun, ZHANG Jian-ping, ZHANG Xin. Design and characteristic analysis of off-axis meta-lens[J].Chinese Optics.doi:10.37188/CO.2023-0039 |
As a new type of planar optical element, meta-lens can flexibly control the phase, polarization and amplitude of light. They have great potential for device lightweighting and mass manufacturing, and have garnered widespread attention. Off-axis meta-lens, a special type of meta-lens with certain dispersion effect, can be used as a spectral element, providing a unique and feasible way to realize micro instruments. This paper proposes a design method for off-axis meta-lens and analyzes the effects of numerical aperture, off-axis angle, and incident wavelength on the simulation deviation, resolution and focusing efficiency of off-axis meta-lenses, which provides valuable insights for subsequent research and application of off-axis meta-lenses.
Several off-axis meta-lenses with parameters
The simulation results indicate that the off-axis angle is directly proportional to the spectral resolution. As the angle increases, t the spectral resolution becomes larger, but the focusing efficiency decreases. A smaller numerical aperture result in a smaller coverage of the phase distribution, leading to a larger deviation between the simulation and theory.
Designers need to reasonably balance parameters such as numerical aperture and off-axis angle according to the requirements to finally achieve the desired effect. The conclusion of this study is an important reference value for theoretical analysis and parameter design of off-axis meta-lens in practical application.
[1] |
徐碧洁, 陈向宁, 赵峰, 等. 近红外波长超透镜的设计与仿真[J]. 与红外,2021,51(11):1466-1471.
XU B J, CHEN X N, ZHAO F,
et al. Near-infrared wavelength metalens design and simulation[J].
Laser&
Infrared, 2021, 51(11): 1466-1471. (in Chinese)
|
[2] |
刘逸天, 陈琦凯, 唐志远, 等. 超表面透镜的像差分析和成像技术研究[J]. 中国光学,2021,14(4):831-850.
doi:10.37188/CO.2021-0014
LIU Y T, CHEN Q K, TANG ZH Y,
et al. Research progress of aberration analysis and imaging technology based on metalens[J].
Chinese Optics, 2021, 14(4): 831-850. (in Chinese)
doi:10.37188/CO.2021-0014
|
[3] |
WANG Y J, CHEN Q M, YANG W H,
et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window[J].
Nature Communications, 2021, 12: 5560.
doi:10.1038/s41467-021-25797-9
|
[4] |
LIN P, LIN Y SH, LIN J,
et al. Stretchable metalens with tunable focal length and achromatic characteristics[J].
Results in Physics, 2021, 31: 105005.
doi:10.1016/j.rinp.2021.105005
|
[5] |
SHAN D ZH, XU N X, GAO J S,
et al. Design of the all-silicon long-wavelength infrared achromatic metalens based on deep silicon etching[J].
Optics Express, 2022, 30(8): 13616-13629.
doi:10.1364/OE.449870
|
[6] |
林若雨, 吴一凡, 付博妍, 等. 超构透镜的色差调控应用[J]. 中国光学,2021,14(4):764-781.
doi:10.37188/CO.2021-0096
LIN R Y, WU Y F, FU B Y,
et al. Application of chromatic aberration control of metalens[J].
Chinese Optics, 2021, 14(4): 764-781. (in Chinese)
doi:10.37188/CO.2021-0096
|
[7] |
LI M M, LI SH SH, CHIN L K,
et al. Dual-layer achromatic metalens design with an effective abbe number[J].
Optics Express, 2020, 28(18): 26041-26055.
doi:10.1364/OE.402478
|
[8] |
SHAN D ZH, GAO J S, XU N X,
et al. Bandpass filter integrated metalens based on electromagnetically induced transparency[J].
Nanomaterials, 2022, 12(13): 2282.
doi:10.3390/nano12132282
|
[9] |
ZUO R ZH, LIU W W, CHENG H,
et al. Breaking the diffraction limit with radially polarized light based on dielectric metalenses[J].
Advanced Optical Materials, 2018, 6(21): 1800795.
doi:10.1002/adom.201800795
|
[10] |
LI Y Y, CAO L Y, WEN ZH Q,
et al. Broadband quarter-wave birefringent meta-mirrors for generating sub-diffraction vector fields[J].
Optics Letters, 2019, 44(1): 110-113.
doi:10.1364/OL.44.000110
|
[11] |
LI R ZH, GUO ZH Y, WEI W,
et al. Arbitrary focusing lens by holographic metasurface[J].
Photonics Research, 2015, 3(5): 252-255.
doi:10.1364/PRJ.3.000252
|
[12] |
SAJEDIAN I, LEE H, RHO J. Double-deep Q-learning to increase the efficiency of metasurface holograms[J].
Scientific Reports, 2019, 9(1): 10899.
doi:10.1038/s41598-019-47154-z
|
[13] |
付娆, 李子乐, 郑国兴. 超构表面的振幅调控及其功能器件研究进展[J]. 中国光学,2021,14(4):886-899.
doi:10.37188/CO.2021-0017
FU R, LI Z L, ZHENG G X. Research development of amplitude-modulated metasurfaces and their functional devices[J].
Chinese Optics, 2021, 14(4): 886-899. (in Chinese)
doi:10.37188/CO.2021-0017
|
[14] |
AVAYU O, ALMEIDA E, PRIOR Y,
et al. Composite functional metasurfaces for multispectral achromatic optics[J].
Nature Communications, 2017, 8(1): 14992.
doi:10.1038/ncomms14992
|
[15] |
JIN J J, PU M B, WANG Y Q,
et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial[J].
Advanced Materials Technologies, 2017, 2(2): 1600201.
doi:10.1002/admt.201600201
|
[16] |
WEI Q SH, HUANG L L, LI X W,
et al. Broadband multiplane holography based on plasmonic metasurface[J].
Advanced Optical Materials, 2017, 5(18): 1700434.
doi:10.1002/adom.201700434
|
[17] |
CHENG H, WEI X Y, YU P,
et al. Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces[J].
Applied Physics Letters, 2017, 110(17): 171903.
doi:10.1063/1.4982240
|
[18] |
BAI W, YANG P, WANG SH,
et al. Actively tunable metalens array based on patterned phase change materials[J].
Applied Sciences, 2019, 9(22): 4927.
doi:10.3390/app9224927
|
[19] |
YU P, LI J X, ZHANG SH,
et al. Dynamic Janus metasurfaces in the visible spectral region[J].
Nano Letters, 2018, 18(7): 4584-4589.
doi:10.1021/acs.nanolett.8b01848
|
[20] |
SHE A, ZHANG SH Y, SHIAN S,
et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J].
Science Advances, 2018, 4(2): eaap9957.
doi:10.1126/sciadv.aap9957
|
[21] |
KHORASANINEJAD M, CHEN W T, OH J,
et al. Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy[J].
Nano Letters, 2016, 16(6): 3732-3737.
doi:10.1021/acs.nanolett.6b01097
|
[22] |
ZHU A Y, CHEN W T, KHORASANINEJAD M,
et al. Ultra-compact visible chiral spectrometer with meta-lenses[J].
APL Photonics, 2017, 2(3): 036103.
doi:10.1063/1.4974259
|
[23] |
ZHOU Y, CHEN R, MA Y G. Design of optical wavelength demultiplexer based on off-axis meta-lens[J].
Optics Letters, 2017, 42(22): 4716-4719.
doi:10.1364/OL.42.004716
|
[24] |
ZHOU Y, CHEN R, MA Y G. Characteristic analysis of compact spectrometer based on off-axis meta-lens[J].
Applied Sciences, 2018, 8(3): 321.
doi:10.3390/app8030321
|
[25] |
ZHU A Y, CHEN W T, SISLER J,
et al. Compact aberration‐corrected spectrometers in the visible using dispersion‐tailored metasurfaces[J].
Advanced Optical Materials, 2019, 7(14): 1801144.
doi:10.1002/adom.201801144
|
[26] |
罗先刚. 亚波长电磁学: 上册[M]. 北京: 科学出版社, 2017: 208-214.
LUO X G. Sub-Wavelength Electromagnetics:Vol. 1[M]. Beijing: Science Press, 2017: 208-214. (in Chinese)
|
[27] |
XIAO S Y, ZHAO F, WANG D Y,
et al. Inverse design of a near-infrared metalens with an extended depth of focus based on double-process genetic algorithm optimization[J].
Optics Express, 2023, 31(5): 8668-8681.
doi:10.1364/OE.484471
|
[28] |
丁继飞, 刘文兵, 李含辉, 等. 大焦深离轴超透镜的设计与制作[J]. 物理学报,2021,70(19):197802.
doi:10.7498/aps.70.20202235
DING J F, LIU W B, LI H H,
et al. Design and fabrication of off-axis meta-lens with large focal depth[J].
Acta Physica Sinica, 2021, 70(19): 197802. (in Chinese)
doi:10.7498/aps.70.20202235
|
[29] |
BANERJI S, MEEM M, MAJUMDER A,
et al. Imaging with flat optics: metalenses or diffractive lenses?[J].
Optica, 2019, 6(6): 805-810.
doi:10.1364/OPTICA.6.000805
|