Citation: | ZHANG Bo-wen, HAN Dan, XUE Mengyun, CAO Rongxing, LI Hongxia, ZENG Xianghua, XUE Yu-xiong. Effect of electron irradiation on CsPbBr3perovskite nanocrystal[J].Chinese Optics.doi:10.37188/CO.2023-0044 |
With excellent optical properties and high carrier mobility, perovskite materials have become highly competitive materials in the field of space solar cells. However, space particle irradiation can change the structure and optical properties of materials, leading to a rapid degradation of device performance. In order to investigate the influence of electron irradiation on the structure and optical properties of CsPbBr3nanocrystals, this paper conducted electron irradiation experiments on CsPbBr3materials, characterized the microscopic morphology of CsPbBr3nanocrystals by high-resolution transmission electron microscopy method. Moreover, this paper investigated the change trend of crystal structure by X-ray diffraction analysis and X-ray photoelectron spectroscopy analysis. The results revealed electron irradiation caused the CsPbBr3 nanocrystals to become rough and significantly reduced in size. The nanocrystal became compact and formed nanocluster under high-dose electron irradiation. Furthermore, the optical properties of CsPbBr3materials were characterized using steady-state UV-Vis absorption spectra and photoluminescence spectra. The analysis of lattice expansion-induced bandgap changes after irradiation was performed using first principles calculations. It is demonstrated that electron irradiation deepened the color of nanocrystals and affected the light transmittance of CsPbBr3nanocrystalline, thereby enhancing the optical absorption performance of the samples. However, electron irradiation also led to the decomposition of CsPbBr3 nanocrystals, resulting in a significant reduction in luminescence intensity by 53.7%−78.6% after high-dose irradiation. These findings provide valuable data support for the study of spatial radiation damage mechanisms and the application of perovskite nanocrystals.
[1] |
翟彤彤, 李云辉, 朱建伟, 等. 卤化物钙钛矿纳米晶的电化学发光研究进展[J]. 分析化学,2023,51(5):642-651.
ZHAI T T, LI Y H, ZHU J W,
et al. Progress in electrochemiluminescence of halide perovskites nanocrystals[J].
Chinese Journal of Analytical Chemistry, 2023, 51(5): 642-651. (in Chinese)
|
[2] |
王婷, 魏奇, 付强, 等. 钙钛矿光伏电池封装材料与工艺研究进展[J]. 应用化学,2022,39(9):1321-1344.
WANG T, WEI Q, FU Q,
et al. Review of perovskite photovoltaic cell encapsulation material and technology[J].
Chinese Journal of Applied Chemistry, 2022, 39(9): 1321-1344. (in Chinese)
|
[3] |
董国华, 郝丽娟, 张文治, 等. 碳量子点纳米材料在铅卤钙钛矿太阳能电池中的应用研究进展[J]. 应用化学,2022,39(5):707-722.
DONG G H, HAO L J, ZHANG W ZH,
et al. Recent progress on the application of carbon quantum dots nano-materials in lead halogen perovskite solar photoelectric devices[J].
Chinese Journal of Applied Chemistry, 2022, 39(5): 707-722. (in Chinese)
|
[4] |
GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J].
Nature Photonics, 2014, 8(7): 506-514.
doi:10.1038/nphoton.2014.134
|
[5] |
STOUMPOS C C, KANATZIDIS M G. The renaissance of halide perovskites and their evolution as emerging semiconductors[J].
Accounts of Chemical Research, 2015, 48(10): 2791-2802.
doi:10.1021/acs.accounts.5b00229
|
[6] |
LIU X, LI J, WANG X,
et al. Inorganic lead-based halide perovskites: from fundamental properties to photovoltaic applications[J].
Materials Today, 2022, 61: 191-217.
doi:10.1016/j.mattod.2022.11.002
|
[7] |
TU Y G, WU J, XU G N,
et al. Perovskite solar cells for space applications: progress and challenges[J].
Advanced Materials, 2021, 33(21): 2006545.
doi:10.1002/adma.202006545
|
[8] |
吴闻迪, 余婷, 陶蒙蒙, 等. 掺铥光纤γ射线辐照效应实验研究[J]. 中国光学,2018,11(4):610-614.
doi:10.3788/co.20181104.0610
WU W D, YU T, TAO M M,
et al. Experimental investigation of gamma-ray irradiation effect on Tm-doped fibers[J].
Chinese Optics, 2018, 11(4): 610-614. (in Chinese)
doi:10.3788/co.20181104.0610
|
[9] |
LANG F, JOŠT M, BUNDESMANN J,
et al. Efficient minority carrier detrapping mediating the radiation hardness of triple-cation perovskite solar cells under proton irradiation[J].
Energy&
Environmental Science, 2019, 12(5): 1634-1647.
|
[10] |
KANAYA S, KIM G M, IKEGAMI M,
et al. Proton irradiation tolerance of high-efficiency perovskite absorbers for space applications[J].
The Journal of Physical Chemistry Letters, 2019, 10(22): 6990-6995.
doi:10.1021/acs.jpclett.9b02665
|
[11] |
BOLDYREVA A G, AKBULATOV A F, TSAREV S A,
et al. γ-Ray-induced degradation in the triple-cation perovskite solar cells[J].
The Journal of Physical Chemistry Letters, 2019, 10(4): 813-818.
doi:10.1021/acs.jpclett.8b03222
|
[12] |
BOLDYREVA A G, FROLOVA L A, ZHIDKOV I S,
et al. Unravelling the material composition effects on the gamma ray stability of lead halide perovskite solar cells: MAPbI
3breaks the records[J].
The Journal of Physical Chemistry Letters, 2020, 11(7): 2630-2636.
doi:10.1021/acs.jpclett.0c00581
|
[13] |
冯远皓, 柯小行, 隋曼龄. 无机双钙钛矿太阳能电池材料Cs
2AgBiBr
6在电子束辐照下的降解行为研究[J]. 电子显微学报,2020,39(1):1-8.
FENG Y H, KE X X, SUI M L. Effect of electron irradiation on inorganic double perovskite solar cell material Cs
2AgBiBr
6[J].
Journal of Chinese Electron Microscopy Society, 2020, 39(1): 1-8. (in Chinese)
|
[14] |
GAO L, TAO K ZH, SUN J L,
et al. Gamma‐ray radiation stability of mixed‐cation lead mixed‐halide perovskite single crystals[J].
Advanced Optical Materials, 2022, 10(3): 2102069.
doi:10.1002/adom.202102069
|
[15] |
DANG ZH Y, SHAMSI J, PALAZON F,
et al.
In situtransmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals[J].
ACS Nano, 2017, 11(2): 2124-2132.
doi:10.1021/acsnano.6b08324
|
[16] |
CHEN X Y, WANG ZH W. Investigating chemical and structural instabilities of lead halide perovskite induced by electron beam irradiation[J].
Micron, 2019, 116: 73-79.
doi:10.1016/j.micron.2018.09.010
|
[17] |
HOVINGTON P, DROUIN D, GAUVIN R. CASINO: A new Monte Carlo code in C language for electron beam interaction—part I: description of the program[J].
Scanning, 1997, 19(1): 1-14.
|
[18] |
KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for
ab initiototal-energy calculations using a plane-wave basis set[J].
Physical Review B, 1996, 54(16): 11169-11186.
doi:10.1103/PhysRevB.54.11169
|
[19] |
KHUILI M, FAZOUAN N, EL MAKARIM H A,
et al. First principle study of structural, electronic, optical and electrical properties of Ga doped ZnO with GGA and mBJ approximations[J].
Journal of Physics:
Conference Series, 2016, 758(1): 012024.
|
[20] |
HONG Y K, PARK D H, PARK S K,
et al. Tuning and enhancing photoluminescence of light-emitting polymer nanotubes through electron-beam irradiation[J].
Advanced Functional Materials, 2009, 19(4): 567-572.
doi:10.1002/adfm.200801088
|
[21] |
MELONI S, PALERMO G, ASHARI-ASTANI N,
et al. Valence and conduction band tuning in halide perovskites for solar cell applications[J].
Journal of Materials Chemistry A, 2016, 4(41): 15997-16002.
doi:10.1039/C6TA04949D
|
[22] |
WANG SH, MA J Q, LI W C,
et al. Temperature-dependent band gap in two-dimensional perovskites: thermal expansion interaction and electron–phonon interaction[J].
The Journal of Physical Chemistry Letters, 2019, 10(10): 2546-2553.
doi:10.1021/acs.jpclett.9b01011
|
[23] |
GLEADOW A J W, DUDDY I R. A natural long-term track annealing experiment for apatite[J].
Nuclear Tracks, 1981, 5(1-2): 169-174.
doi:10.1016/0191-278X(81)90039-1
|