Citation: | ZOU Hong-bo, ZHANG Biao, WANG Zi-chuan, CHEN Ke, WANG Li-qiang, YUAN Bo. Non-uniform illumination correction algorithm for cytoendoscopy images based on illumination model[J].Chinese Optics.doi:10.37188/CO.2023-0059 |
Cytoendoscopy requires continuous amplification with a maximum magnification rate of about 500 times. Due to optical fiber illumination and stray light, the image has non-uniform illumination that changes with the magnification rate, which affects the observation and judgement of lesions by doctors. Therefore, we propose an image non-uniform illumination correction algorithm based on the illumination model of cytoendoscopy. According to the principle that image information is composed of illumination and reflection components, the algorithm obtains the illumination component of the image through a convolutional neural network, and realizes non-uniform illumination correction based on the two-dimensional Gamma function. Experiments show that the average gradient of the illumination channel and the discrete entropy of the image are 0.22 and 7.89, respectively, after the non-uniform illumination correction by the proposed method, which is superior to the traditional methods such as adaptive histogram equalization, homophobic filtering, single-scale Retinex and the WSI-FCN algorithm based on deep learning.
[1] |
GOETZ M, MALEK N P, KIESSLICH R. Microscopic imaging in endoscopy: endomicroscopy and endocytoscopy[J].
Nature Reviews Gastroenterology & Hepatology, 2014, 11(1): 11-18.
|
[2] |
霍嘉燚, 李冕豪, 王子川, 等. 全景内窥成像技术及应用[J]. 中国光学(中英文),2023,16(1):44-60.
doi:10.37188/CO.2022-0074
HUO J Y, LI M H, WANG Z CH,
et al. Panoramic endoscopic imaging technology and it’s applications[J].
Chinese Optics, 2023, 16(1): 44-60.
doi:10.37188/CO.2022-0074
|
[3] |
王子川, 张伟, 郭飞, 等. 跨尺度光学内窥成像技术[J]. 中国光学(中英文),2022,15(6):1287-1301.
doi:10.37188/CO.2022-0078
WANG Z CH, ZHANG W, GUO F,
et al. Trans-scale optical endoscopy imaging technology[J].
Chinese Optics, 2022, 15(6): 1287-1301.
doi:10.37188/CO.2022-0078
|
[4] |
张伟, 牛春阳, 游兴海, 等. 高倍率大视场细胞内镜成像系统研究[J]. 光学学报,2021,41(17):1717001.
doi:10.3788/AOS202141.1717001
ZHANG W, NIU CH Y, YOU X H,
et al. Endocytoscopic imaging system with high magnification and large field of view[J].
Acta Optica Sinica, 2021, 41(17): 1717001. (in Chinese)
doi:10.3788/AOS202141.1717001
|
[5] |
PIZER S M, AMBURN E P, AUSTIN J D,
et al. Adaptive histogram equalization and its variations[J].
Computer Vision, Graphics, and Image Processing, 1987, 39(3): 355-368.
doi:10.1016/S0734-189X(87)80186-X
|
[6] |
XIE X D, LAM K M. Face recognition under varying illumination based on a 2D face shape model[J].
Pattern Recognition, 2005, 38(2): 221-230.
doi:10.1016/S0031-3203(04)00275-4
|
[7] |
LEE P H, WU S W, HUNG Y P. Illumination compensation using oriented local histogram equalization and its application to face recognition[J].
IEEE Transactions on Image Processing, 2012, 21(9): 4280-4289.
doi:10.1109/TIP.2012.2202670
|
[8] |
FAN CH N, ZHANG F Y. Homomorphic filtering based illumination normalization method for face recognition[J].
Pattern Recognition Letters, 2011, 32(10): 1468-1479.
doi:10.1016/j.patrec.2011.03.023
|
[9] |
AL SOBBAHI R, TEKLI J. Low-light homomorphic filtering network for integrating image enhancement and classification[J].
Signal Processing:Image Communication, 2022, 100: 116527.
doi:10.1016/j.image.2021.116527
|
[10] |
LAND E H, MCCANN J J. Lightness and Retinex theory[J].
Journal of the Optical Society of America, 1971, 61(1): 1-11.
doi:10.1364/JOSA.61.000001
|
[11] |
JOBSON D J, RAHMAN Z, WOODELL G A. Properties and performance of a center/surround Retinex[J].
IEEE Transactions on Image Processing, 1997, 6(3): 451-462.
doi:10.1109/83.557356
|
[12] |
ZHANG SH, WANG T, DONG J Y,
et al. Underwater image enhancement via extended multi-scale Retinex[J].
Neurocomputing, 2017, 245: 1-9.
doi:10.1016/j.neucom.2017.03.029
|
[13] |
ZHOU J CH, YAO J, ZHANG W SH,
et al. Multi-scale Retinex-based adaptive gray-scale transformation method for underwater image enhancement[J].
Multimedia Tools and Applications, 2022, 81(2): 1811-1831.
doi:10.1007/s11042-021-11327-8
|
[14] |
MEI X F, XIE F Y, JIANG ZH G. Uneven illumination removal based on fully convolutional network for dermoscopy images[C].
2016 13th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), IEEE, 2016: 243-247.
|
[15] |
WANG J H, WANG X, ZHANG P,
et al. Correction of uneven illumination in color microscopic image based on fully convolutional network[J].
Optics Express, 2021, 29(18): 28503-28520.
doi:10.1364/OE.433064
|