Citation: | LI Yan-wei, WU Yan-xiong, CHEN Tai-xi, WEI Hao-dong, XIE Xin-wang, DONG Lei-gang, LI Jun-chi, LI Jian-jie. Design and experiment of high resolution detection imaging system for ultra-thin and ultra-short object-image distance[J]. Chinese Optics. doi: 10.37188/CO.2023-0099 |
In order to shorten the axial and radial dimensions of the 12-inch wafer detection imaging system, a solution combining the small Angle prism refraction path and the ultra-short object-image distance lens is proposed. A small Angle prism with better shape accuracy than 1/12λ (λ=632.8 nm) is designed to convert the optical path and realize the horizontal arrangement between the lighting system and the imaging lens. The radial size is only 80 mm, which greatly reduces the radial size of the whole system without affecting the imaging quality. At the same time, a small angle of 12° bright field lighting is realized. A symmetrical hybrid optical system with magnification of 0.264 is designed. A pure spherical system is used to obtain a large imaging field of view. The image height is 81.92 mm, and the object image distance is only 392.5 mm, which greatly reduces the axial size of the whole system. The design results show that the average optical transfer function of the whole imaging system is better than 0.4@100l p/mm, the relative distortion is better than 0.03%, and the uniformity of the image surface illuminance is better than 50%. The actual test results show that the actual imaging resolution is better than 18.88 μm, which reaches the ultimate resolution of the system. The uniformity of illumination of image surface is 43.3%, which meets the development requirement of uniformity better than 40%. The research results show that the ultra-thin and ultra-short object-image distance imaging system is reasonable and effective, which solves the problem of space size compression of the 12-inch wafer detection imaging system and reduces the development cost. It provides a reference for the development of the imaging system for detecting large objects in short distance.
[1] |
卢荣胜, 吴昂, 张腾达, 等. 自动光学(视觉)检测技术及其在缺陷检测中的应用综述[J]. 光学学报,2018,38(8):0815002. doi: 10.3788/AOS201838.0815002
LU R SH, WU A, ZHANG T D, et al. Review on automated optical (visual) inspection and its applications in defect detection[J]. Acta Optica Sinica, 2018, 38(8): 0815002. (in Chinese). doi: 10.3788/AOS201838.0815002
|
[2] |
胡跃明, 谭颖. 自动光学检测在中国的应用现状和发展[J]. 微计算机信息,2006,22(4):143-146.
HU Y M, TAN Y. State and development of automatic optical inspection applications in China[J]. Microcomputer Information, 2006, 22(4): 143-146. (in Chinese).
|
[3] |
潘珍英. 工业自动光学检测中的照明系统设计[D]. 厦门: 厦门大学, 2007.
PAN ZH Y. The design of illumination system in industrial automatic optical inspection[D]. Xiamen: Xiamen University, 2007. (in Chinese).
|
[4] |
李明泽, 侯溪, 赵文川, 等. 非球面光学表面缺陷检测技术现状和发展趋势(特邀)[J]. 红外与
工程,2022,51(9):20220457.
LI M Z, HOU X, ZHAO W CH, et al. Current situation and development trend of aspheric optical surface defect detection technology (invited)[J]. Infrared and Laser Engineering, 2022, 51(9): 20220457. (in Chinese).
|
[5] |
周辉, 熊显名. 提高AOI检测设备对准精度的研究[J]. 自动化与仪器仪表,2022(7):1-4,14.
ZHOU H, XIONG X M. Study on improving the alignment accuracy of AOI testing equipment[J]. Automation & Instrumentation, 2022(7): 1-4,14. (in Chinese).
|
[6] |
LU R SH, SHI Y Q, LI Q, et al. AOI techniques for surface defect inspection[J]. Applied Mechanics and Materials, 2010, 36: 297-302. doi: 10.4028/www.scientific.net/AMM.36.297
|
[7] |
李晨. 基于机器视觉的不同属性表面中微弱缺陷的检测技术研究[D]. 杭州: 浙江大学, 2018.
LI CH. Detection technology of weak defects on the surfaces with different property based on machine vision[D]. Hangzhou: Zhejiang University, 2018. (in Chinese).
|
[8] |
刘韬, 胡玥, 董健, 等.
主动照明光学系统设计[J]. 中国光学,2016,9(3):342-348. doi: 10.3788/co.20160903.0342
LIU T, HU Y, DONG J, et al. Design of laser active illumination optical system[J]. Chinese Optics, 2016, 9(3): 342-348. (in Chinese). doi: 10.3788/co.20160903.0342
|
[9] |
陈世炜. 基于明暗场成像的多扫描方式图案化晶圆检测技术研究[D]. 杭州: 浙江大学, 2021.
CHEN SH W. Research on patterned wafer inspection technology with multi-sean mode based on bright and dark field imaging[D]. Hangzhou: Zhejiang University, 2021. (in Chinese).
|
[10] |
陈宇轩, 仇中军, 汤骏杰. 线扫描视觉检测系统机械-成像综合误差建模[J]. 红外与
工程,2022,51(12):20220282.
CHEN Y X, QIU ZH J, TANG J J. Mechanical-imaging comprehensive error modeling in line scan vision detection systems[J]. Infrared and Laser Engineering, 2022, 51(12): 20220282. (in Chinese).
|
[11] |
樊星皓. 星载高分成像与高光谱采集双路共口径光学系统的设计与研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022.
FAN X H. Design and research on the dual-channel co-aperture optical system for spaceborne high-resolution imaging and hyperspectral acquisition[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanicsand Physics, Chinese Academy of Sciences), 2022. (in Chinese).
|
[12] |
张美君. 航空相机反射镜支撑结构优化设计及环境适应性分析[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022.
ZHANG M J. Optimal design and environmental adaptability analysis for mounting mirror in an aerial camera[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanicsand Physics, Chinese Academy of Sciences), 2022. (in Chinese).
|
[13] |
柴世豪, 郭晨霞, 李建鑫. 轮廓测量系统中摄像机的光学畸变校正方法[J]. 电子测量技术,2021,44(21):158-162. doi: 10.19651/j.cnki.emt.2107306
CHAI SH H, GUO CH X, LI J X. Optical distortion correction method for cameras in contour measuring system[J]. Electronic Measurement Technology, 2021, 44(21): 158-162. (in Chinese). doi: 10.19651/j.cnki.emt.2107306
|
[14] |
秦子长, 任成明, 戚允升, 等. 小型高分辨率空间相机光学系统低误差敏感度设计[J]. 红外与
工程,2022,51(10):20220365.
QIN Z CH, REN CH M, QI Y SH, et al. Low error-sensitive design of small-sized high-resolution space camera optical system[J]. Infrared and Laser Engineering, 2022, 51(10): 20220365. (in Chinese).
|
[15] |
左超, 陈钱. 分辨率、超分辨率与空间带宽积拓展-从计算光学成像角度的一些思考[J]. 中国光学(中英文),2022,15(6):1105-1166.
ZUO CH, CHEN Q. Resolution, super-resolution and spatial bandwidth product expansion-some thoughts from the perspective of computational optical imaging[J]. Chinese Optics, 2022, 15(6): 1105-1166. (in Chinese).
|
[16] |
国家机械工业局. JB/T 8248.3-1999 照相镜头渐晕系数及像面照度均匀度测量方法[S]. 北京: 机械工业出版社, 2004.
State Administration of Machinery Industry. JB/T 8248.3-1999 Method for measuring the coefficient of vignetting and uniformity of image plane illuminance[S]. Beijing: China Machine Press, 2004. (in Chinese).
|