Citation: | CHEN Xiang-xue, FU Zi-qin, WANG Feng-chao, CHEN Jin, YANG Jing. Terahertz band-stop filter with H-type structure[J]. Chinese Optics, 2024, 17(4): 757-763. doi: 10.37188/CO.2023-0179 |
In this paper, a terahertz band-stop filter based on a symmetrical H-type structure was designed, the continuous metal arms of which can flow current. By using electromagnetic simulation software CST Microwave Studio 2021, the filtering characteristics of the filter were studied, and the geometric parameters of the filter were determined by changing the arm length, period length and gap of double H. The results show that the filter can realize the tunable polarization properties. Under the
[1] |
潘学聪, 姚泽瀚, 徐新龙, 等. 太赫兹波段超材料的制作、设计及应用[J]. 中国光学,2013,6(3):283-296.
PAN X C, YAO Z H, XU X L, et al. Fabrication, design and application of THz metamaterials[J]. Chinese Optics, 2013, 6(3): 283-296. (in Chinese).
|
[2] |
姚建铨, 路洋, 张百钢, 等. THz辐射的研究和应用新进展[J]. 光电子·金宝搏188软件怎么用
,2005,16(4):503-510.
YAO J Q, LU Y, ZHANG B G, et al. New research progress of THz radiation[J]. Journal of Optoelectronics·Laser, 2005, 16(4): 503-510. (in Chinese).
|
[3] |
TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. doi: 10.1038/nphoton.2007.3
|
[4] |
LU X Y, VENKATESH S, SAEIDI H. A review on applications of integrated terahertz systems[J]. China Communications, 2021, 18(5): 175-201. doi: 10.23919/JCC.2021.05.011
|
[5] |
WILLIAMS G P. Filling the THz gap—high power sources and applications[J]. Reports on Progress in Physics, 2006, 69(2): 301-326. doi: 10.1088/0034-4885/69/2/R01
|
[6] |
闫海涛, 邓朝, 郭澜涛, 等. 太赫兹远距离快速扫描成像系统的设计[J]. 应用光学,2016,37(2):183-186. doi: 10.5768/JAO201637.0201006
YAN H T, DENG CH, GUO L T, et al. Design of terahertz rapid standoff imaging system[J]. Journal of Applied Optics, 2016, 37(2): 183-186. (in Chinese). doi: 10.5768/JAO201637.0201006
|
[7] |
GONG A P, QIU Y T, CHEN X W, et al. Biomedical applications of terahertz technology[J]. Applied Spectroscopy Reviews, 2020, 55(5): 418-438. doi: 10.1080/05704928.2019.1670202
|
[8] |
胡其枫, 蔡健. 基于深度学习的太赫兹时域光谱识别研究[J]. 光谱学与光谱分析,2021,41(1):94-99.
HU Q F, CAI J. Research of terahertz time-domain spectral identification based on deep learning[J]. Spectroscopy and Spectral Analysis, 2021, 41(1): 94-99. (in Chinese).
|
[9] |
FANG X M, JIANG X W, WU H. Dual-wavelength narrow-bandwidth dielectric metamaterial absorber[J]. Chinese Optics, 2021, 14(6): 1327-1340. doi: 10.37188/CO.2021-0075
|
[10] |
张若雅, 朱巧芬, 张岩. 可调谐太赫兹超材料吸波器研究进展[J]. 量子电子学报,2023,40(3):301-318. doi: 10.3969/j.issn.1007-5461.2023.03.002
ZHANG R Y, ZHU Q F, ZHANG Y. Research progress of tunable terahertz metamaterial absorbers[J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 301-318. (in Chinese). doi: 10.3969/j.issn.1007-5461.2023.03.002
|
[11] |
CHEN ZH, CAI P G, WEN Q Y, et al. Graphene multi-frequency broadband and ultra-broadband terahertz absorber based on surface plasmon resonance[J]. Electronics, 2023(12): 2655.
|
[12] |
凌芳, 孟庆龙, 黄人帅, 等. 温控太赫兹调制器多频带调制特性[J]. 光谱学与光谱分析,2017,37(5):1334-1338.
LING F, MENG Q L, HUANG R SH, et al. The characteristics of thermally tunable multi-bands terahertz modulator[J]. Spectroscopy and Spectral Analysis, 2017, 37(5): 1334-1338. (in Chinese).
|
[13] |
KYOUNG J, JANG E Y, LIMA M D, et al. A reel-wound carbon nanotube polarizer for terahertz frequencies[J]. Nano Letters, 2011, 11(10): 4227-4231. doi: 10.1021/nl202214y
|
[14] |
董卓, 陈捷, 朱一帆, 等. 黑砷磷室温太赫兹探测器(英文)[J]. 中国光学,2021,14(1):182-195. doi: 10.37188/CO.2020-0175
DONG ZH, CHEN J, ZHU Y F, et al. Room-temperature terahertz photodetectors based on black arsenic-phosphorus[J]. Chinese Optics, 2021, 14(1): 182-195. (in Chinese). doi: 10.37188/CO.2020-0175
|
[15] |
肖尚辉, 刘简, 胡波, 等. 基于低采样率数模转换器和模数转换器的太赫兹发射机线性化[J]. 电子与信息学报,2023,45(2):718-724.
XIAO SH H, LIU J, HU B, et al. Linearization of terahertz transmitter based on low sampling rate DAC and ADC[J]. Journal of Electronics & Information Technology, 2023, 45(2): 718-724. (in Chinese).
|
[16] |
VALUŠIS G, LISAUSKAS A, YUAN H, et al. Roadmap of terahertz imaging 2021[J]. Sensors, 2021, 21(12): 4092. doi: 10.3390/s21124092
|
[17] |
YEH T T, GENOVESI S, MONORCHIO A, et al. Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials[J]. Optics Express, 2012, 20(7): 7580-7589. doi: 10.1364/OE.20.007580
|
[18] |
ZHU M, LEE C. A design of terahertz broadband filters and its effect in eliminating asymmetric characteristics in device structures[J]. Journal of Lightwave Technology, 2015, 33(15): 3280-3285. doi: 10.1109/JLT.2015.2432017
|
[19] |
王俊林, 张斌珍, 段俊萍, 等. 柔性双阻带太赫兹超材料滤波器[J]. 光学学报,2017,37(10):1016001. doi: 10.3788/AOS201737.1016001
WANG J L, ZHANG B ZH, DUAN J P, et al. Flexible dual-stopband terahertz metamaterial filter[J]. Acta Optica Sinica, 2017, 37(10): 1016001. (in Chinese). doi: 10.3788/AOS201737.1016001
|
[20] |
KUMAR D, JAIN R, SHAHJAHAN, et al. Bandwidth enhancement of planar terahertz metasurfaces via overlapping of dipolar modes[J]. Plasmonics, 2020, 15(6): 1925-1934. doi: 10.1007/s11468-020-01222-7
|
[21] |
高万, 王建扬, 吴倩楠. 基于双金属环的超材料太赫兹宽频带通滤波器的设计与研究[J]. 金宝搏188软件怎么用
与光电子学进展,2021,58(5):0516001.
GAO W, WANG J Y, WU Q N. Design and investigation of a metamaterial terahertz broadband bandpass filter based on dual metallic ring[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0516001. (in Chinese).
|
[22] |
HUANG Y, OKATANI T, KANAMORI Y. Broadband stop filters for THz waves using H-shaped metamaterials with dual electronic-plasmonic functionality[J]. Japanese Journal of Applied Physics, 2022, 61(SD): SD1007. doi: 10.35848/1347-4065/ac55dd
|
[23] |
TANG SH, HAN J N. Acoustic transmission characteristics based on H-type metamaterials[J]. IEEE Access, 2019, 7: 96125-96131. doi: 10.1109/ACCESS.2019.2929194
|
[24] |
WANG K H, LI J SH, YAO J Q. Sensitive terahertz free space modulator using CsPbBr3 perovskite quantum dots–embedded metamaterial[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41(5): 557-567. doi: 10.1007/s10762-020-00680-8
|
[25] |
TANG CH, YANG J, WANG Y D, et al. Integrating terahertz metamaterial and water nanodroplets for ultrasensitive detection of amyloid β aggregates in liquids[J]. Sensors and Actuators B:Chemical, 2021, 329: 129113. doi: 10.1016/j.snb.2020.129113
|
[26] |
YANG J, TANG CH, WANG Y D, et al. The terahertz dynamics interfaces to ion–lipid interaction confined in phospholipid reverse micelles[J]. Chemical Communications, 2019, 55(100): 15141-15144. doi: 10.1039/C9CC07598D
|