Volume 17 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
LI Zhi-bin, LI Liang, ZHANG Jian-qiang. Composite fast nonsingular terminal sliding mode control of fast steering mirror[J]. Chinese Optics, 2024, 17(4): 959-970. doi: 10.37188/CO.2023-0203
Citation: LI Zhi-bin, LI Liang, ZHANG Jian-qiang. Composite fast nonsingular terminal sliding mode control of fast steering mirror[J]. Chinese Optics, 2024, 17(4): 959-970. doi: 10.37188/CO.2023-0203

Composite fast nonsingular terminal sliding mode control of fast steering mirror

cstr: 32171.14.CO.2023-0203
Funds:  Supported by National Natural Science Foundation of China (No. U23A20336, No. 61733017); Natural Science Foundation of Shandong Province (No. ZR2021QF117, No. ZR2021QF140)
More Information
  • Corresponding author: zhangjg7170@163.com
  • Received Date: 11 Nov 2023
  • Rev Recd Date: 05 Dec 2023
  • Accepted Date: 17 Jan 2024
  • Available Online: 31 Jan 2024
  • This paper aims to improve the control performance of the precision tracking system for laser communication by studying the control method of Fast Steering Mirrors (FSM) driven by a voice coil motor. FSM often face the problems of strong cross-coupling characteristics and external disturbances. To overcome these challenges, we propose a composite fast nonsingular terminal sliding mode control strategy integrating feedforward decoupling compensation and fixed-time extended state observer. First, the FSM’s coupling transfer function matrix model with double inputs and double outputs is established by using the system identification method, and the feedforward decoupling compensator is designed to compensate for the coupling components and achieve motion decoupling between the X-axis and Y-axis. Second, the fixed-time extended state observer is designed for each decoupled single-axis model to achieve a fixed-time estimation of angular velocity and external disturbances simultaneously. Then, the fast nonsingular terminal sliding mode surface is constructed, and the exponential power function is adopted to replace the sign function in control law design, so as to improve the system’s convergence speed and suppress the chattering of the sliding mode. The proposed control system’s stability and the tracking error finite-time convergence are proved based on the Lyapunov stability analysis method. Finally, the effectiveness of the proposed composite control strategy is verified by comparative experiments. The experimental results show that under the 100 Hz strong disturbances, for the FSM tracking 60 Hz and 120 Hz circular trajectories, the average absolute values of its trajectory tracking error are 0.0036° and 0.0131°, respectively, indicating that the system can maintain good tracking performance. The proposed composite control strategy is validated as effectively meeting the FSM’s high-precision and strong anti-disturbance requirements for laser communication.

     

  • loading
  • [1]
    高世杰, 吴佳彬, 刘永凯, 等. 微小卫星金宝搏188软件怎么用 通信系统发展现状与趋势[J]. 中国光学,2020,13(6):1171-1181. doi: 10.37188/CO.2020-0033

    GAO SH J, WU J B, LIU Y K, et al. Development status and trend of micro-satellite laser communication systems[J]. Chinese Optics, 2020, 13(6): 1171-1181. (in Chinese). doi: 10.37188/CO.2020-0033
    [2]
    王文杰, 徐伟, 朴永杰, 等. 卫星星间金宝搏188软件怎么用 通信粗跟踪转台控制系统[J]. 光学 精密工程,2021,29(12):2797-2805. doi: 10.37188/OPE.20212912.2797

    WANG W J, XU W, PIAO Y J, et al. Control system for coarse tracking turntable of laser communication between satellites[J]. Optics and Precision Engineering, 2021, 29(12): 2797-2805. (in Chinese). doi: 10.37188/OPE.20212912.2797
    [3]
    白凡. 机载金宝搏188软件怎么用 通信APT系统的仿真研究[D]. 西安: 西安理工大学, 2022.

    BAI F. Simulation of APT system for airborne laser communication[D]. Xi’an: Xi’an University of Technology, 2022. (in Chinese).
    [4]
    董全睿, 陈涛, 高世杰, 等. 光电精跟踪系统的改进差分进化算法研究[J]. 中国光学,2020,13(6):1314-1323. doi: 10.37188/CO.2020-0021

    DONG Q R, CHEN T, GAO SH J, et al. Identification of opto-electronic fine tracking systems based on an improved differential evolution algorithm[J]. Chinese Optics, 2020, 13(6): 1314-1323. (in Chinese). doi: 10.37188/CO.2020-0021
    [5]
    朱伟鸿, 汪洋, 王栎皓, 等. 卫星金宝搏188软件怎么用 通信MEMS快速反射镜可靠性研究进展[J]. 红外与金宝搏188软件怎么用 工程,2023,52(9):20230179. doi: 10.3788/IRLA20230179

    ZHU W H, WANG Y, WANG L H, et al. Research progress of reliability of MEMS fast steering mirror for satellite laser communication[J]. Infrared and Laser Engineering, 2023, 52(9): 20230179. (in Chinese). doi: 10.3788/IRLA20230179
    [6]
    XIAO R J, XU M L, SHAO SH B, et al. Design and wide-bandwidth control of large aperture fast steering mirror with integrated-sensing unit[J]. Mechanical Systems and Signal Processing, 2019, 126: 211-226. doi: 10.1016/j.ymssp.2019.02.028
    [7]
    刘永凯, 吕福睿, 高世杰, 等. 地基大口径望远镜动态目标跟踪中压电式快速反射镜迟滞效应的补偿[J]. 光学 精密工程,2022,30(23):3081-3089. doi: 10.37188/OPE.20223023.3081

    LIU Y K, LÜ F R, GAO SH J, et al. Compensation of hysteresis effect of piezoelectric fast steering mirror in dynamic target tracking of ground-based large aperture telescope system[J]. Optics and Precision Engineering, 2022, 30(23): 3081-3089. (in Chinese). doi: 10.37188/OPE.20223023.3081
    [8]
    蔡玉生, 朱军, 石磊, 等. 大口径快速反射镜的模糊自适应PID控制[J]. 红外技术,2021,43(6):523-531.

    CAI Y SH, ZHU J, SHI L, et al. Fuzzy adaptive PID control of large aperture fast steering mirror[J]. Infrared Technology, 2021, 43(6): 523-531. (in Chinese).
    [9]
    LI ZH B, WEN J CH, SUN CH SH, et al. Motion profile and control design of fast steering mirror for backscanning step and stare imaging[J]. Review of Scientific Instruments, 2023, 94(1): 014501. doi: 10.1063/5.0134112
    [10]
    殷宗迪, 高志远, 朱猛, 等. 机载金宝搏188软件怎么用 武器高精度跟踪控制技术研究[J]. 红外与金宝搏188软件怎么用 工程,2021,50(8):20200391. doi: 10.3788/IRLA20200391

    YIN Z D, GAO ZH Y, ZHU M, et al. Research on high precision tracking control technology of airborne laser weapon[J]. Infrared and Laser Engineering, 2021, 50(8): 20200391. (in Chinese). doi: 10.3788/IRLA20200391
    [11]
    王正玺, 张葆, 李贤涛. 基于自适应鲁棒控制提升快速反射镜的抗扰能力[J]. 中国金宝搏188软件怎么用 ,2019,46(9):0905002. doi: 10.3788/CJL201946.0905002

    WANG ZH X, ZHANG B, LI X T. Improving anti-disturbance capability of fast steering mirror by adaptive robust control[J]. Chinese Journal of Lasers, 2019, 46(9): 0905002. (in Chinese). doi: 10.3788/CJL201946.0905002
    [12]
    LI ZH B, LI L, ZHANG J Q, et al. Nonsingular terminal sliding mode control of voice coil actuator fast steering mirror based on tracking differentiator[C]. Proceedings of the IEEE 18th Conference on Industrial Electronics and Applications, IEEE, 2023: 1099-1105.
    [13]
    宋晓莉, 张驰, 郭亚伟. 一种双永磁同步电机滑模同步驱动控制方法[J]. 中国光学(中英文),2023,16(6):1482-1492. doi: 10.37188/CO.EN-2022-0026

    SONG X L, ZHANG CH, GUO Y W. A sliding-mode control of a Dual-PMSMs synchronization driving method[J]. Chinese Optics, 2023, 16(6): 1482-1492. (in Chinese). doi: 10.37188/CO.EN-2022-0026
    [14]
    王瑞, 苏秀琴, 乔永明, 等. 基于双前馈+双神经网络自适应快速反射镜的解耦控制[J]. 红外与金宝搏188软件怎么用 工程,2021,50(11):20210194. doi: 10.3788/IRLA20210194

    WANG R, SU X Q, QIAO Y M, et al. Decoupling control of fast steering mirror based on dual feedforward + dual neural network adaptive[J]. Infrared and Laser Engineering, 2021, 50(11): 20210194. (in Chinese). doi: 10.3788/IRLA20210194
    [15]
    张智鑫, 刘旭东. 基于ESO的永磁同步电机伺服系统快速终端滑模控制[J]. 控制理论与应用,2023,40(7):1233-1242.

    ZHANG ZH X, LIU X D. Fast terminal sliding mode control of permanent magnet synchronous motor servo system with ESO[J]. Control Theory & Applications, 2023, 40(7): 1233-1242. (in Chinese).
    [16]
    张振, 郭一楠, 巩敦卫, 等. 基于改进扩展状态观测器的液压锚杆钻机滑模摆角控制[J]. 自动化学报,2023,49(6):1256-1271.

    ZHANG ZH, GUO Y N, GONG D W, et al. Sliding mode swing angle control for a hydraulic roofbolter based on improved extended state observer[J]. Acta Automatica Sinica, 2023, 49(6): 1256-1271. (in Chinese).
    [17]
    CHEN G ZH, LIU P K, DING H. Structural parameter design method for a fast-steering mirror based on a closed-loop bandwidth[J]. Frontiers of Mechanical Engineering, 2020, 15(1): 55-65. doi: 10.1007/s11465-019-0545-y
    [18]
    朱志远, 朱紫辉, 周晓勤, 等. 三轴电磁-压电混合驱动快速刀具伺服的轨迹跟踪控制[J]. 光学 精密工程,2023,31(15):2236-2247. doi: 10.37188/OPE.20233115.2236

    ZHU ZH Y, ZHU Z H, ZHOU X Q, et al. Trajectory tracking control for tri-axial fast tool servo using hybrid electromagnetic-piezoelectric actuation[J]. Optics and Precision Engineering, 2023, 31(15): 2236-2247. (in Chinese). doi: 10.37188/OPE.20233115.2236
    [19]
    景亮, 张忠阳, 崔乃刚, 等. 固定时间收敛扰动观测终端滑模制导律设计[J]. 系统工程与电子技术,2019,41(8):1820-1826. doi: 10.3969/j.issn.1001-506X.2019.08.20

    JING L, ZHANG ZH Y, CUI N G, et al. Fixed time disturbance observer based terminal sliding mode guidance law[J]. Systems Engineering and Electronics, 2019, 41(8): 1820-1826. (in Chinese). doi: 10.3969/j.issn.1001-506X.2019.08.20
    [20]
    MÉNARD T, MOULAY E, PERRUQUETTI W. Fixed-time observer with simple gains for uncertain systems[J]. Automatica, 2017, 81: 438-446. doi: 10.1016/j.automatica.2017.04.009
    [21]
    李亚苹, 王芳, 周超. 全状态受限的高超声速飞行器的预定性能滤波反步控制[J]. 航空学报,2020,41(11):623857.

    LI Y P, WANG F, ZHOU CH. Prescribed performance filter backstepping control of hypersonic vehicle with full state constraints[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 623857. (in Chinese).
    [22]
    冯建鑫, 王雅雷, 王强, 等. 基于改进粒子群算法的快速反射镜自抗扰控制[J]. 系统工程与电子技术,2021,43(12):3675-3682.

    FENG J X, WANG Y L, WANG Q, et al. Fast steering mirror ADRC based on improved particle swarm optimizer[J]. Systems Engineering and Electronics, 2021, 43(12): 3675-3682. (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article views(303) PDF downloads(110) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map