Citation: | LI Long, SHI Shuai, GONG Ting, TIAN Ya-li, GUO Gu-qing, QIU Xuan-bing, XIONG Xiao-he, LI Chuan-liang. Research on laser online monitoring equipment for high-temperature corrosive gas in coal-fired boilers[J]. Chinese Optics, 2024, 17(5): 1060-1067. doi: 10.37188/CO.2023-0209 |
The coal-fired boiler combustion process's economic, safety, and environmental performance holds great significance when constructing smart power plants. In coal-fired boiler combustion, H2S and CO are the two main high-temperature corrosive gases. They not only corrode the boiler near the wall surface but also pose severe harm to the atmospheric environment through their exhaust gases. Based on the near-infrared tunable diode laser absorption spectroscopy technology, combined with wavelength modulation spectroscopy and frequency division multiplexing technology, an unstaffed online real-time monitoring instrument for H2S and CO gas concentrations in the main combustion zone of coal-fired boilers was developed. Gas absorption spectroscopy in the
[1] |
陈颖, 胡天丁, 刘云利, 等. 二氧化硫在化学资源化利用中的研究进展[J]. 应用化学,2022,39(2):223-234.
CHEN Y, HU T D, LIU Y L, et al. Research progress on chemical resourse utilization of sulfur dioxide[J]. Chinese Journal of Applied Chemistry, 2022, 39(2): 223-234. (in Chinese).
|
[2] |
XIONG X H, CHEN F L, LI L Y, et al. Water wall tubes’ high temperature corrosion root cause investigation: a 300 MW level boiler case[J]. Energies, 2023, 16(4): 1767. doi: 10.3390/en16041767
|
[3] |
CAO L T, PENG R, DENG ZH Y. Optimization study on high-temperature corrosion prevention of the water wall of a 1000 MW dual circle tangential boiler during operation[J]. Energy Reports, 2021, 7: 915-925. doi: 10.1016/j.egyr.2021.09.181
|
[4] |
齐骥, 相佳雯, 林栋, 等. 微流控技术在海洋分析监测中的应用研究[J]. 分析化学,2023,51(10):1545-1556.
QI J, XIANG J W, LIN D, et al. Applications of microfluidic technology in marine analysis and monitoring[J]. Chinese Journal of Analytical Chemistry, 2023, 51(10): 1545-1556. (in Chinese).
|
[5] |
曲艺. 大气光学遥感监测技术现状与发展趋势[J]. 中国光学,2013,6(6):834-840.
QU Y. Technical status and development tendency of atmosphere optical remote and monitoring[J]. Chinese Optics, 2013, 6(6): 834-840. (in Chinese).
|
[6] |
刘明言, 石秀顶, 李天国, 等. 电化学分析方法检测重金属离子研究进展[J]. 应用化学,2023,40(4):463-475.
LIU M Y, SHI X D, LI T G, et al. Research progress in detection of heavy metal ions by electrochemical analysis[J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 463-475. (in Chinese).
|
[7] |
XIONG X H, LV ZH M, YU SH L, et al. Coke preheating combustion study on NOx and SO2 emission[J]. Journal of the Energy Institute, 2021, 97: 131-137. doi: 10.1016/j.joei.2021.04.007
|
[8] |
杨舒涵, 乔顺达, 林殿阳, 等. 基于可调谐半导体金宝搏188软件怎么用
吸收光谱的氧气浓度高灵敏度检测研究[J]. 中国光学(中英文),2023,16(1):151-157. doi: 10.37188/CO.2022-0029
YANG SH H, QIAO SH D, LIN D Y, et al. Research on highly sensitive detection of oxygen concentrations based on tunable diode laser absorption spectroscopy[J]. Chinese Optics, 2023, 16(1): 151-157. (in Chinese). doi: 10.37188/CO.2022-0029
|
[9] |
黄慧, 周亦辰, 彭宇, 等. 基于量子级联金宝搏188软件怎么用
器中红外光谱技术的幽门螺旋杆菌呼气诊断的可行性研究[J]. 分析化学,2022,50(9):1328-1335.
HUANG H, ZHOU Y CH, PENG Y, et al. Feasibility study of breath diagnosis in helicobacter pylori based on quantum cascade laser mid-infrared spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2022, 50(9): 1328-1335. (in Chinese).
|
[10] |
GUO Y CH, QIU X B, LI N, et al. A portable laser-based sensor for detecting H2S in domestic natural gas[J]. Infrared Physics & Technology, 2020, 105: 103153.
|
[11] |
谢耀, 华道柱, 齐宇, 等. GFC-IFC技术在多组分微量气体分析中的应用[J]. 中国光学,2021,14(6):1378-1386. doi: 10.37188/CO.2021-0064
XIE Y, HUA D Z, QI Y, et al. Applications of GFC-IFC in trace multi-component gas analysis[J]. Chinese Optics, 2021, 14(6): 1378-1386. (in Chinese). doi: 10.37188/CO.2021-0064
|
[12] |
RAZA M, XU K, LU ZH M, et al. Simultaneous methane and acetylene detection using frequency-division multiplexed laser absorption spectroscopy[J]. Optics & Laser Technology, 2022, 154: 108285.
|
[13] |
李文婷, 吴涛, 闫宏达, 等. 基于射频白噪声的离轴积分腔输出光谱的大气CH4和CO2的监测[J]. 光学学报,2023,43(24):2401013.
LI W T, WU T, YAN H D, et al. Monitoring of atmospheric CH4 and CO2 by off-axis integrating cavity output spectra based on RF white noise[J]. Acta Optica Sinica, 2023, 43(24): 2401013. (in Chinese).
|
[14] |
ZHENG K Y, ZHENG CH T, YAO D, et al. A near-infrared C2H2/CH4 dual-gas sensor system combining off-axis integrated-cavity output spectroscopy and frequency-division-multiplexing-based wavelength modulation spectroscopy[J]. Analyst, 2019, 144(6): 2003-2010. doi: 10.1039/C8AN02164C
|
[15] |
POGÁNY A, WERHAHN O, EBERT V. Measurement of ammonia line intensities in the 1.5 µm region by direct tunable diode laser absorption spectroscopy[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 276: 107884. doi: 10.1016/j.jqsrt.2021.107884
|
[16] |
彭志敏, 杜艳君, 贺拴玲, 等. 350 MW四角切圆锅炉水冷壁高温腐蚀及H2S在线监测预警[J]. 锅炉技术,2022,53(6):1-7.
PENG ZH M, DU Y J, HE SH L, et al. High temperature corrosion of water wall of 350 MW tangentially fired boiler and H2S online monitoring and early warning[J]. Boiler Technology, 2022, 53(6): 1-7. (in Chinese).
|
[17] |
YU B, WU X, ZHANG M H, et al. Tunable diode laser absorption spectroscopy for open-path monitoring gas markers in fire combustion products[J]. Infrared Physics & Technology, 2023, 131: 104690.
|
[18] |
朱晓睿, 卢伟业, 饶雨舟, 等. TDLAS直接吸收法测量CO2的基线选择方法[J]. 中国光学,2017,10(4):455-461. doi: 10.3788/co.20171004.0455
ZHU X R, LU W Y, RAO Y ZH, et al. Selection of baseline method in TDLAS direct absorption CO2 measurement[J]. Chinese Optics, 2017, 10(4): 455-461. (in Chinese). doi: 10.3788/co.20171004.0455
|
[19] |
龙江雄, 张玉钧, 邵立, 等. 基于可调谐二极管金宝搏188软件怎么用
吸收光谱的气池光程可溯源测量[J]. 光谱学与光谱分析,2022,42(11):3461-3466.
LONG J X, ZHANG Y J, SHAO L, et al. Traceable measurement of optical path length of gas cell based on tunable diode laser absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2022, 42(11): 3461-3466. (in Chinese).
|
[20] |
袁志国, 马修真, 刘晓楠, 等. 利用可调谐金宝搏188软件怎么用
吸收光谱技术的柴油机排放温度测试研究[J]. 中国光学,2020,13(2):281-289. doi: 10.3788/co.20201302.0281
YUAN ZH G, MA X ZH, LIU X N, et al. Testing on diesel engine emission temperature using tunable laser absorption spectroscopy technology[J]. Chinese Optics, 2020, 13(2): 281-289. (in Chinese). doi: 10.3788/co.20201302.0281
|
[21] |
钟笠, 宋迪, 焦月, 等. 具有复杂光谱特征的丙烯气体的TDLAS检测技术研究[J]. 中国光学,2020,13(5):1044-1054. doi: 10.37188/CO.2019-0203
ZHONG L, SONG D, JIAO Y, et al. TDLAS detection of propylene with complex spectral features[J]. Chinese Optics, 2020, 13(5): 1044-1054. (in Chinese). doi: 10.37188/CO.2019-0203
|
[22] |
连久翔, 周宾, 王一红, 等. 基于高频参考光的频分复用技术实现强干扰下的气体浓度测量[J]. 光学学报,2020,40(16):1630001. doi: 10.3788/AOS202040.1630001
LIAN J X, ZHOU B, WANG Y H, et al. Measurement of gas concentration under strong interference by frequency multiplexing based on high-frequency reference signal[J]. Acta Optica Sinica, 2020, 40(16): 1630001. (in Chinese). doi: 10.3788/AOS202040.1630001
|
[23] |
刘倩倩, 郑玉权. 超高分辨率光谱定标技术发展概况[J]. 中国光学,2012,5(6):566-577.
LIU Q Q, ZHENG Y Q. Development of spectral calibration technologies with ultra-high resolutions[J]. Chinese Optics, 2012, 5(6): 566-577. (in Chinese).
|
[24] |
任颐杰, 颜昌翔, 徐嘉蔚. 增强吸收光谱技术的研究进展及展望[J]. 中国光学(中英文),2023,16(6):1273-1292. doi: 10.37188/CO.2022-0246
REN Y J, YAN CH X, XU J W. Development and prospects of enhanced absorption spectroscopy[J]. Chinese Optics, 2023, 16(6): 1273-1292. (in Chinese). doi: 10.37188/CO.2022-0246
|
[25] |
QIU X B, WEI Y B, LI J, et al. Early detection system for coal spontaneous combustion by laser dual-species sensor of CO and CH4[J]. Optics & Laser Technology, 2020, 121: 105832.
|
[26] |
LIAO K X, QIN M, YANG N, et al. Corrosion main control factors and corrosion degree prediction charts in H2S and CO2 coexisting associated gas pipelines[J]. Materials Chemistry and Physics, 2022, 292: 126838. doi: 10.1016/j.matchemphys.2022.126838
|
[27] |
FANG B, YANG N N, WANG CH H, et al. Highly sensitive portable laser absorption spectroscopy formaldehyde sensor using compact spherical mirror multi-pass cell[J]. Sensors and Actuators B: Chemical, 2023, 394: 134379. doi: 10.1016/j.snb.2023.134379
|
[28] |
彭志敏, 贺拴玲, 周佩丽, 等. 基于TDLAS的煤粉锅炉水冷壁近壁面CO/H2S同步在线监测[J]. 热力发电,2022,51(10):145-152.
PENG ZH M, HE SH L, ZHOU P L, et al. TDLAS-based synchronous on-line measurement of CO/H2S near water wall of a pulverized coal boiler[J]. Thermal Power Generation, 2022, 51(10): 145-152. (in Chinese).
|
[29] |
许伟刚, 谭厚章, 刘原一, 等. 水冷壁高温腐蚀倾向判断及H2S近壁面许用浓度研究[J]. 中国电力,2018,51(7):113-119.
XU W G, TAN H ZH, LIU Y Y, et al. Research on determination of high temperature corrosion tendency of water walls and limiting concentration range of H2S near walls[J]. Electric Power, 2018, 51(7): 113-119. (in Chinese).
|