Citation: | WEI Yu-xuan, WANG Zhen-yu, LI Zhi-guo, HUANG Le-hong, YANG Kai, MA Yu-bao. Lightweight and optimized U-frame design for space-borne two-dimensional turntable[J]. Chinese Optics, 2024, 17(4): 896-908. doi: 10.37188/CO.2023-0227 |
Space-borne two-dimensional turntables are the main bearing mechanism of space cameras and other optoelectronic equipment, and the U-frame is the key supporting part of these turntables. In order to optimize the structure and lightweight design of the U-frame of the two-dimensional turntable and to develop a lightweight two-dimensional turntable with a high load-bearing ratio, we design a U-frame for the space two-dimensional turntable based on Carbon Fiber Reinforce Plastics (CFRP). First, a variable cross-section tubular structure U-frame was designed using carbon fiber composites instead of titanium alloy material considering the manufacturability. Then, according to the finite element modeling method based on the lay-up process, the carbon fiber U-frame was subjected to finite element modeling and simulation analysis. Then, a prototype U-frame was fabricated, and modal tests verified the accuracy of the finite element model. Finally, a three-level optimization method combining theoretical analysis, genetic algorithm, and the finite element method was proposed to optimize the design of carbon fiber U-frame ply angle, ply thickness, and ply sequence. The results indicate that the vibration patterns of the U-frame obtained from the modal test and simulation are identical and that the frequency difference is less than 5%. The initial design of the carbon fiber U-frame is 45.7% lighter than the titanium U-frame. Through the secondary optimization of the composite layup, the U-frame is further reduced in weight by 13.8%. Additionally, the intrinsic frequency of the U-frame is improved by 10.14%. It can be concluded that the composite modeling and optimization methods used in this paper are correct, and the designed carbon fiber U-frame meets the lightweight design requirements of space-born two-dimensional turntable.
[1] |
孙景旭, 谢虹波, 李淑贤, 等. 轻小型全铝高分相机[J]. 中国光学(中英文),2023,16(6):1450-1462. doi: 10.37188/CO.2023-0062
SUN J X, XIE H B, LI SH X, et al. All-aluminum high-resolution camera with lightweight and compact size[J]. Chinese Optics, 2023, 16(6): 1450-1462. (in Chinese). doi: 10.37188/CO.2023-0062
|
[2] |
HU Q L, LI ZH H, YANG L, et al. Overview of research on space laser communication tracking and pointing technology[J]. Chemical Engineering Transactions, 2015, 46: 1015-1020.
|
[3] |
张永强, 刘朝晖, 李治国, 等. 空间二维转台照准架的结构优化设计[J]. 红外与金宝搏188软件怎么用
工程,2017,46(S1):S113003.
ZHANG Y Q, LIU ZH H, LI ZH G, et al. Optimum structural design for collimation frame of space-based two-dimensional turntable[J]. Infrared and Laser Engineering, 2017, 46(S1): S113003. (in Chinese).
|
[4] |
李威, 郭权锋. 碳纤维复合材料在航天领域的应用[J]. 中国光学,2011,4(3):201-212.
LI W, GUO Q F. Application of carbon fiber composites to cosmonautic fields[J]. Chinese Optics, 2011, 4(3): 201-212. (in Chinese).
|
[5] |
李欣, 宋绮梦, 张学强, 等. 金宝搏188软件怎么用
加工碳纤维增强复合材料及其在航空航天领域应用[J]. 中国金宝搏188软件怎么用
,2024,51(4):0402101. doi: 10.3788/CJL231358
LI X, SONG Q M, ZHANG X Q, et al. Laser processing of carbon fiber reinforced polymer composites and their application in aerospace field[J]. Chinese Journal of Lasers, 2024, 51(4): 0402101. (in Chinese). doi: 10.3788/CJL231358
|
[6] |
彭超义, 杜刚, 曾竟成, 等. 大载荷下空间桁架结构主承力用碳/环氧推力管的重量优化设计[J]. 玻璃钢/复合材料,2003(6):33-35,21.
PENG CH Y, DU G, ZENG J CH, et al. Weight optimum design for primary load bearing carbon/epoxy tubes in space truss structure under large loads[J]. Fiber Reinforced Plastics/Composite, 2003(6): 33-35,21. (in Chinese).
|
[7] |
李威, 刘宏伟, 郭权锋, 等. 空间相机主次镜间的薄壁筒和支杆组合支撑结构[J]. 光学 精密工程,2010,18(12):2633-2641.
LI W, LIU H W, GUO Q F, et al. Combined supporting structure of thin wall joint cylinder and supporting bar between primary mirror and second mirror in space camera[J]. Optics and Precision Engineering, 2010, 18(12): 2633-2641. (in Chinese).
|
[8] |
郭疆, 邵明东, 王国良, 等. 空间遥感相机碳纤维机身结构设计[J]. 光学 精密工程,2012,20(3):571-578. doi: 10.3788/OPE.20122003.0571
GUO J, SHAO M D, WANG G L, et al. Design of optical-mechanical structure made of CFC in space remote sensing camera[J]. Optics and Precision Engineering, 2012, 20(3): 571-578. (in Chinese). doi: 10.3788/OPE.20122003.0571
|
[9] |
王智. 基于碳纤维复合材料的月基极紫外相机照准架结构设计[J]. 中国光学,2012,5(6):590-595.
WANG ZH. Design of collimation frame structure for lunar-based extreme ultraviolet camera based on carbon fiber reinforced plastics[J]. Chinese Optics, 2012, 5(6): 590-595. (in Chinese).
|
[10] |
陈卓, 胡庆龙, 李朝辉. 基于碳纤维框架天基目标探测二维跟踪转台结构优化[J]. 光学 精密工程,2021,29(3):547-557. doi: 10.37188/OPE.20212903.0547
CHEN ZH, HU Q L, LI ZH H. Structural optimization of 2-D tracking turntable with carbon fiber framework for spatial target detection[J]. Optics and Precision Engineering, 2021, 29(3): 547-557. (in Chinese). doi: 10.37188/OPE.20212903.0547
|
[11] |
方献军, 徐自立, 熊春明. OptiStruct及HyperStudy优化与工程应用[M]. 北京: 机械工业出版社, 2021.
FANG X J, XU Z L, XIONG CH M. OptiStruct and HyperStudy Optimization and Engineering Application[M]. Beijing: China Machine Press, 2021. (in Chinese).
|
[12] |
李先阳, 刘彬, 于雅琳, 等. 碳纤维复杂构件LCM成型工艺技术发展综述[J]. 复合材料科学与工程,2023(11):116-121.
LI X Y, LIU B, YU Y L, et al. A review of the development of LCM forming technology for carbon fiber complex components[J]. Composites Science and Engineering, 2023(11): 116-121. (in Chinese).
|
[13] |
贾振元, 付饶, 王福吉. 碳纤维复合材料构件加工技术进展[J]. 机械工程学报,2023,59(19):348-374. doi: 10.3901/JME.2023.19.348
JIA ZH Y, FU R, WANG F J. Research advance review of machining technology for carbon fiber reinforced polymer composite components[J]. Journal of Mechanical Engineering, 2023, 59(19): 348-374. (in Chinese). doi: 10.3901/JME.2023.19.348
|
[14] |
胡宁, 赵丽滨. 航空航天复合材料力学[M]. 北京: 科学出版社, 2021.
HU N, ZHAO L B. Mechanics of Aerospace Composite Materials[M]. Beijing: Science Press, 2021. (in Chinese).
|
[15] |
黄成磊, 范庆明, 刘红军, 等. 利用遗传算法的太阳能复合材料机翼结构尺寸优化设计[J/OL]. 机械科学与技术, 2023: 1-8. https://doi.org/10.13433/j.cnki.1003-8728.20230289.
HUANG CH L, FAN Q M, LIU H J, et al. Size optimization design of solar composite wing structure using genetic algorithm[J/OL]. Mechanical Science and Technology for Aerospace Engineering, 2023: 1-8. https://doi.org/10.13433/j.cnki.1003-8728.20230289. (in Chinese).
|
[16] |
孙鹏文, 侯战华, 岳彩宾, 等. 基于遗传算法的风力机叶片结构铺层厚度优化[J]. 太阳能学报,2016,37(6):1566-1572. doi: 10.3969/j.issn.0254-0096.2016.06.032
SUN P W, HOU ZH H, YUE C B, et al. Ply thickness optimization of wind turbine blade based on genetic algorithm[J]. Acta Energiae Solaris Sinica, 2016, 37(6): 1566-1572. (in Chinese). doi: 10.3969/j.issn.0254-0096.2016.06.032
|
[17] |
张景源, 陈北北, 杨永兴, 等. 融合遗传算法和BP神经网络的光斑定位方法[J]. 中国光学(中英文),2023,16(2):407-414. doi: 10.37188/CO.2022-0084
ZHANG J Y, CHEN B B, YANG Y X, et al. Positioning algorithm for laser spot center based on BP neural network and genetic algorithm[J]. Chinese Optics, 2023, 16(2): 407-414. (in Chinese). doi: 10.37188/CO.2022-0084
|
[18] |
严君. 基于OptiStruct碳纤维复合材料薄壁结构优化设计研究[D]. 太原: 中北大学, 2012.
YAN J. Research on optimization design of carbon fiber composite thin-walled structure based on OptiStruct[D]. Taiyuan: North University of China, 2012. (in Chinese).
|
[19] |
董新洪, 孙鹏文, 张兰挺, 等. 风力机叶片铺层参数多目标优化设计[J]. 机械工程学报,2022,58(4):165-173. doi: 10.3901/JME.2022.04.165
DONG X H, SUN P W, ZHANG L T, et al. Multi-objective optimization of ply parameters for wind turbine blade[J]. Journal of Mechanical Engineering, 2022, 58(4): 165-173. (in Chinese). doi: 10.3901/JME.2022.04.165
|
[20] |
张娜, 姚树燕, 马钜, 等. 复合材料薄板的成型固化收缩变形研究[J]. 玻璃钢/复合材料,2009(4):24-26,31.
ZHANG N, YAO SH Y, MA J, et al. Study on the shrinkage deformation of thin composite laminates during curing process[J]. Fiber Reinforced Plastics/Composite, 2009(4): 24-26,31. (in Chinese).
|
[21] |
王轩, 赵晨起. 弹载光学系统复合材料支撑结构低热膨胀优化[J]. 红外与金宝搏188软件怎么用
工程,2023,52(5):20220742. doi: 10.3788/IRLA20220742
WANG X, ZHAO CH Q. Low thermal expansion optimization of composite support structure for missile-borne optical system[J]. Infrared and Laser Engineering, 2023, 52(5): 20220742. (in Chinese). doi: 10.3788/IRLA20220742
|
[22] |
中国航空工业集团公司复合材料技术中心. 航空复合材料技术[M]. 北京: 航空工业出版社, 2013.
AVIC COMPOSITE CO. Aviation Composite Material Technology[M]. Beijing: Aviation Industry Press, 2013. (in Chinese).
|