Citation: | WANG Yu-pei, ZHANG Yu-hang, LUO Xiao-yue, QIAN Chen-hao, CHENG Yang, ZHAO Wu, WEI Zhi-xiang, HAN Di-yi, SUN Fang-yuan, WANG Jun, ZHOU Da-yong. 4.7 μm mid-wave infrared quantum cascade laser with double active region structure[J]. Chinese Optics, 2024, 17(5): 1042-1049. doi: 10.37188/CO.2023-0239 |
This paper reports a 4.7-μm mid-wave infrared quantum cascade laser based on double active region structure with a ridge width of 9.5 μm, which can achieve continuous single transverse mode operation at room temperature. By inserting 0.8-μm InP, the original single active region is transformed into a double active region structure, which can significantly reduce the peak temperature of the device's active region and suppress the generation of higher-order transverse modes. At a temperature of 288 K, the device with a double active region structure with a cavity length of 5 mm has a threshold current density of 1.14 kA/cm2, a continuous output power of 0.706 W, a fast axis divergence angle of 27.3°, and a slow axis divergence angle of 18.1°. Compared with conventional devices with a single active region structure, the devices with a double active region structure have no degradation in their maximum optical output power and show a significant improvement in the beam quality in the slow axis direction of the device. These results provide a solution to the problem of the slow axis beam quality of high-power mid-wave quantum cascade lasers.
[1] |
FAIST J, CAPASSO F, SIVCO D L, et al. Quantum cascade laser[J]. Science, 1994, 264(5158): 553-556. doi: 10.1126/science.264.5158.553
|
[2] |
赵越, 张锦川, 刘传威, 等. 中远红外量子级联金宝搏188软件怎么用
器研究进展(特邀)[J]. 红外与金宝搏188软件怎么用
工程,2018,47(10):1003001. doi: 10.3788/IRLA201847.1003001
ZHAO Y, ZHANG J CH, LIU CH W, et al. Progress in mid-and far-infrared quantum cascade laser (invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003001. (in Chinese). doi: 10.3788/IRLA201847.1003001
|
[3] |
DELY H, BONAZZI T, SPITZ O, et al. 10 Gbit s−1 free space data transmission at 9 µm wavelength with unipolar quantum optoelectronics[J]. Laser & Photonics Reviews, 2022, 16(2): 2100414.
|
[4] |
SPITZ O, DIDIER P, DURUPT L, et al. Free-space communication with directly modulated mid-infrared quantum cascade devices[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28(1): 1200109.
|
[5] |
温志渝, 王玲芳, 陈刚. 基于量子级联金宝搏188软件怎么用
器的气体检测系统的发展与应用[J]. 光谱学与光谱分析,2010,30(8):2043-2048. doi: 10.3964/j.issn.1000-0593(2010)08-2043-06
WEN ZH Y, WANG L F, CHEN G. Development and application of quantum cascade laser based gas sensing system[J]. Spectroscopy and Spectral Analysis, 2010, 30(8): 2043-2048. (in Chinese). doi: 10.3964/j.issn.1000-0593(2010)08-2043-06
|
[6] |
FATHOLOLOUMI S, DUPONT E, CHAN C W I, et al. Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling[J]. Optics Express, 2012, 20(4): 3866-3876. doi: 10.1364/OE.20.003866
|
[7] |
LI L H, CHEN L, ZHU J X, et al. Terahertz quantum cascade lasers with> 1 W output powers[J]. Electronics Letters, 2014, 50(4): 309-311. doi: 10.1049/el.2013.4035
|
[8] |
VITIELLO M S, SCALARI G, WILLIAMS B, et al. Quantum cascade lasers: 20 years of challenges[J]. Optics Express, 2015, 23(4): 5167-5182. doi: 10.1364/OE.23.005167
|
[9] |
BECK M, HOFSTETTER D, AELLEN T, et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 2002, 295(5553): 301-305. doi: 10.1126/science.1066408
|
[10] |
LYAKH A, MAULINI R, TSEKOUN A, et al. 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach[J]. Applied Physics Letters, 2009, 95(14): 141113. doi: 10.1063/1.3238263
|
[11] |
BAI Y B. High wall plug efficiency quantum cascade lasers[D]. Xi’an: Northwestern University, 2011.
|
[12] |
BAI Y, BANDYOPADHYAY N, TSAO S, et al. Highly temperature insensitive quantum cascade lasers[J]. Applied Physics Letter, 2010, 97(25): 251104. doi: 10.1063/1.3529449
|
[13] |
WANG F, SLIVKEN S, WU D H, et al. Continuous wave quantum cascade lasers with 5.6 W output power at room temperature and 41% wall-plug efficiency in cryogenic operation[J]. AIP Advances, 2020, 10(5): 055120. doi: 10.1063/5.0003318
|
[14] |
NIU SH, YANG P CH, HUANG R X, et al. High power, broad tuning quantum cascade laser at λ ~8.9 µm[J]. Optics Express, 2023, 31(25): 41252-41258. doi: 10.1364/OE.505349
|
[15] |
WANG C A, HUANG R K, GOYAL A, et al. OMVPE growth of highly strain-balanced GaInAs/AlInAs/InP for quantum cascade lasers[J]. Journal of Crystal Growth, 2008, 310(23): 5191-5197. doi: 10.1016/j.jcrysgro.2008.07.100
|
[16] |
ROBERTS J S, GREEN R P, WILSON L R, et al. Quantum cascade lasers grown by metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 2003, 82(24): 4221-4223. doi: 10.1063/1.1583858
|
[17] |
BOTEZ D, KIRCH J D, BOYLE C, et al. High-efficiency, high-power mid-infrared quantum cascade lasers [Invited][J]. Optical Materials Express, 2018, 8(5): 1378-1398. doi: 10.1364/OME.8.001378
|
[18] |
FEI T, ZHAI SH Q, ZHANG J CH, et al. 3 W continuous-wave room temperature quantum cascade laser grown by metal-organic chemical vapor deposition[J]. Photonics, 2023, 10(1): 47. doi: 10.3390/photonics10010047
|
[19] |
FEI T, ZHAI SH Q, ZHANG J CH, et al. High power λ~ 8.5 μm quantum cascade laser grown by MOCVD operating continuous-wave up to 408 K[J]. Journal of Semiconductors, 2021, 42(11): 112301. doi: 10.1088/1674-4926/42/11/112301
|
[20] |
SUN Y Q, YIN R, ZHANG J CH, et al. High-performance quantum cascade lasers at λ ~9 µm grown by MOCVD[J]. Optics Express, 2022, 30(21): 37272-37280. doi: 10.1364/OE.469573
|
[21] |
庞磊, 程洋, 赵武, 等. 基于MOCVD生长的4.6 μm中红外量子级联金宝搏188软件怎么用
器[J]. 红外与金宝搏188软件怎么用
工程,2022,51(6):20210980. doi: 10.3788/IRLA20210980
PANG L, CHENG Y, ZHAO W, et al. Mid-infrared quantum cascade laser grown by MOCVD at 4.6 µm[J]. Infrared and Laser Engineering, 2022, 51(6): 20210980. (in Chinese). doi: 10.3788/IRLA20210980
|
[22] |
孙永强, 费腾, 黎昆, 等. MOCVD生长的瓦级中波红外高功率量子级联金宝搏188软件怎么用
器[J]. 光学学报,2022,42(22):2214002. doi: 10.3788/AOS202242.2214002
SUN Y Q, FEI T, LI K, et al. MOCVD-based mid-wave infrared quantum cascade lasers with watt-level power[J]. Acta Optica Sinica, 2022, 42(22): 2214002. (in Chinese). doi: 10.3788/AOS202242.2214002
|
[23] |
SUTTINGER M, GO R, AZIM A, et al. High brightness operation in broad area quantum cascade lasers with reduced number of stages[C]. Proceedings of 2019 Conference on Lasers and Electro-Optics, IEEE, 2019: 1-2.
|
[24] |
BISMUTO A, GRESCH T, BÄCHLE A, et al. Large cavity quantum cascade lasers with InP interstacks[J]. Applied Physics Letters, 2008, 93(23): 231104. doi: 10.1063/1.3042213
|
[25] |
RYU J H, KIRCH J D, KNIPFER B, et al. Beam stability of buried-heterostructure quantum cascade lasers employing HVPE regrowth[J]. Optics Express, 2021, 29(2): 2819-2826. doi: 10.1364/OE.414489
|
[26] |
XIE F, CANEAU C, LEBLANC H P, et al. Room temperature CW operation of short wavelength quantum cascade lasers made of strain balanced Ga xIn1- xAs/Al yIn1- y as material on InP substrates[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5): 1445-1452. doi: 10.1109/JSTQE.2011.2136325
|
[27] |
YU N F, DIEHL L, CUBUKCU E, et al. Near-field imaging of quantum cascade laser transverse modes[J]. Optics Express, 2007, 15(20): 13227-13235. doi: 10.1364/OE.15.013227
|
[28] |
LEE H K, YU J S. Thermal effects in quantum cascade lasers at λ ~4.6 μm under pulsed and continuous-wave modes[J]. Applied Physics B, 2012, 106(3): 619-627.
|