Citation: | MA Shi-jie, WU Hong-bo, ZHAO Shang-nan, WU Qing, ZHANG Xin. Polarization aberration analysis of catadioptric anamorphic optical systems and its effect on the point spread function[J]. Chinese Optics, 2024, 17(6): 1408-1417. doi: 10.37188/CO.2024-0010 |
The anamorphic optical system is a relatively special optical system with bi-planar symmetry, whose structure gives rise to non-rotationally symmetric polarization aberrations. Aiming at the problem, we construct a catadioptric anamorphic optical system. Furthermore, we also systematically analyzes the polarization aberration of this system and its effect on the point spread function. Simulations of a catadioptric anamorphic optical system based on a three-dimensional polarized light trace are performed to obtain detailed data on the polarization aberration and to compute the diattenuation and retardance distribution characteristics of individual surfaces, as well as the Jones pupil, the amplitude response matrix, the point spread function, and the polarization crosstalk contrast of the system. The maximum diattenuation is 0.145, and the maximum retardance is 1.46×10−2 rad, both occurring at the secondary mirror position. The amplitude response function of the optical system with a 2∶1 anamorphic ratio has a 40.6% difference between the polarization crosstalk term in the long and short focal end directions, and the anamorphic optical systems contrast is limited by an order of magnitude of 10−6 by polarization crosstalk. Polarization aberration in high-precision anamorphic optical systems is not negligible. The effects of polarization aberration can be reduced by film layer design and catadioptric structure. The conclusions of this study can serve as a reference for designing anamorphic optical systems in deep space exploration and coherent communication systems.
[1] |
CHIPMAN R, LAM W S T, YOUNG G. Polarized Light and Optical Systems[M]. Boca Raton: CRC Press, 2018.
|
[2] |
CHIPMAN R A, LAM W S T, BRECKINRIDGE J. Polarization aberration in astronomical telescopes[J]. Proceedings of SPIE, 2015, 9613: 96130H.
|
[3] |
BRECKINRIDGE J B, LAM W S T, CHIPMAN R A. Polarization aberrations in astronomical telescopes: the point spread function[J]. Publications of the Astronomical Society of the Pacific, 2015, 127(951): 445-468. doi: 10.1086/681280
|
[4] |
HE W J, FU Y G, LIU ZH Y, et al. Three-dimensional polarization aberration functions in optical system based on three-dimensional polarization ray-tracing calculus[J]. Optics Communications, 2017, 387: 128-134. doi: 10.1016/j.optcom.2016.11.046
|
[5] |
罗敬, 何煦, 范阔, 等. 无遮拦离轴天文望远镜偏振像差分析及其对光学椭率的影响[J]. 光学学报,2020,40(8):0811001. doi: 10.3788/AOS202040.0811001
LUO J, HE X, FAN K, et al. Polarization aberrations in an unobscured off-axis astronomical telescope and their effects on optics ellipticity[J]. Acta Optica Sinica, 2020, 40(8): 0811001. (in Chinese). doi: 10.3788/AOS202040.0811001
|
[6] |
张艺蓝, 史浩东, 王超, 等. 离轴自由曲面光学系统偏振像差特性研究[J]. 光学学报,2021,41(18):1822002. doi: 10.3788/AOS202141.1822002
ZHANG Y L, SHI H D, WANG CH, et al. Research on polarization aberration characteristics of off-axis freeform surface optical system[J]. Acta Optica Sinica, 2021, 41(18): 1822002. (in Chinese). doi: 10.3788/AOS202141.1822002
|
[7] |
LIU Y, LI Y Q, CAO ZH. Design of anamorphic magnification high-numerical aperture objective for extreme ultraviolet lithography by curvatures combination method[J]. Applied Optics, 2016, 55(18): 4917-4923. doi: 10.1364/AO.55.004917
|
[8] |
CHIPMAN R A. Polarization aberrations[D]. Tucson: The University of Arizona, 1987.
|
[9] |
MCGUIRE J P, CHIPMAN R A. Polarization aberrations. Rotationally symmetric optical systems[J]. Applied Optics, 1994, 33(22): 5080-5100. doi: 10.1364/AO.33.005080
|
[10] |
SASIÁN J. Polarization fields and wavefronts of two sheets for understanding polarization aberrations in optical imaging systems[J]. Optical Engineering, 2014, 53(3): 035102. doi: 10.1117/1.OE.53.3.035102
|
[11] |
杨宇飞, 颜昌翔, 胡春晖, 等. 相干金宝搏188软件怎么用
通信光学系统偏振像差研究[J]. 光学学报,2016,36(11):1106003. doi: 10.3788/AOS201636.1106003
YANG Y F, YAN CH X, HU CH H, et al. Polarization aberration analysis of coherent laser communication system[J]. Acta Optica Sinica, 2016, 36(11): 1106003. doi: 10.3788/AOS201636.1106003
|
[12] |
王凯凯, 王超, 史浩东, 等. 含数字微镜器件的离轴光学系统偏振像差分析及补偿[J]. 光学学报,2022,42(16):1611001. doi: 10.3788/AOS202242.1611001
WANG K K, WANG CH, SHI H D, et al. Polarization aberration analysis and compensation of off-axis optical system with digital micro-mirror device[J]. Acta Optica Sinica, 2022, 42(16): 1611001. doi: 10.3788/AOS202242.1611001
|
[13] |
吴庆, 史广维, 张建萍, 等. 折反式变形光学系统设计[J]. 中国光学(中英文),2023,16(6):1376-1383. doi: 10.37188/CO.2023-0035
WU Q, SHI G W, ZHANG J P, et al. Design of catadioptric anamorphic optical system[J]. Chinese Optics, 2023, 16(6): 1376-1383. (in Chinese). doi: 10.37188/CO.2023-0035
|
[14] |
马迎军, 王晶, 洪永丰, 等. 道威棱镜的偏振特性及偏振补偿研究[J]. 中国光学,2016,9(1):137-143. doi: 10.3788/CO.20160901.0137
MA Y J, WANG J, HONG Y F, et al. Polarization properties and polarization compensation of dove prism[J]. Chinese Optics, 2016, 9(1): 137-143. doi: 10.3788/CO.20160901.0137
|
[15] |
YUN G, CRABTREE K, CHIPMAN R A. Three-dimensional polarization ray-tracing calculus I: definition and diattenuation[J]. Applied Optics, 2011, 50(18): 2855-2865. doi: 10.1364/AO.50.002855
|
[16] |
BERNING P H. Theory and Calculation of Optical Thin Films[M]//HASS G. Physics of Thin Films. New York: Academic Press, 1963.
|
[17] |
GEH B, RUOFF J, ZIMMERMANN J, et al. The impact of projection lens polarization properties on lithographic process at hyper-NA[J]. Proceedings of SPIE, 2007, 6520: 65200F.
|