Citation: | YUAN Jian, PEI Si-yu, HUO Zhan-wei, ZHANG Guan-chen, ZHANG Lei. Design of central support structure for large aperture mirror with wide working temperature[J]. Chinese Optics. doi: 10.37188/CO.2024-0060 |
In order to improve the communication quality of LEO-OGS laser link, commercial ground station telescopes equipped with large aperture primary mirror need to adapt to harsh outdoor temperature conditions.
A central support scheme based on room temperature vulcanized silicone rubber was proposed for a high-precision primary mirror with optical aperture of 500 mm. The structure consists of a Zerodur mirror blank, a pair of bushing and support made of titanium alloy, and a 1mm-thick adhesive layer which can effectively reduce the thermal stress inside assembly while temperature changes and unload the gravity of mirror blank. The thickness and height of the adhesive layer were determined by optimization. Specially designed fixture can accurately control the shape and thickness of the adhesive layer, meanwhile the ventilation holes on the bushing promote its full solidification.
Simulation indicates that the surface shape accuracy of primary mirror is 4.199 nm in RMS under 40 °C temperature variation, with 13.748 nm under vertical gravity, and 4.187 nm under horizontal gravity, accompanied by the maximum mirror inclination and displacement of 4.722" and 3.597 μm, and the fundamental frequency of the assembly reaches 53.45 Hz. The measured surface shape accuracy of primary mirror is RMS 0.017λ (λ=632.8 nm), after extensive heat cycling test and vacuum coating, the surface can maintain high-precision.
The central support structure can significantly improve the temperature adaptability of precise mirrors, and has broad application in large-scale ground optoelectronic equipment.
[1] |
徐月, 刘超, 兰斌, 等. 自适应光学在星地金宝搏188软件怎么用
通信中的研究进展[J]. 金宝搏188软件怎么用
与光电子学进展,2023,60(5):0500004.
XU Y, LIU CH, LAN B, et al. Research progress of adaptive optics in satellite-to-ground laser communication[J]. Laser & Optoelectronics Progress, 2023, 60(5): 0500004. (in Chinese).
|
[2] |
KAMMERER W, GRENFELL P, HYEST L, et al. CLICK mission flight terminal optomechanical integration and testing[J]. Proceedings of SPIE, 2022, 12777: 1277730.
|
[3] |
高世杰, 吴佳彬, 刘永凯, 等. 微小卫星金宝搏188软件怎么用
通信系统发展现状与趋势[J]. 中国光学,2020,13(6):1171-1181. doi: 10.37188/CO.2020-0033
GAO SH J, WU J B, LIU Y K, et al. Development status and trend of micro-satellite laser communication systems[J]. Chinese Optics, 2020, 13(6): 1171-1181. (in Chinese). doi: 10.37188/CO.2020-0033
|
[4] |
SCHIELER C M, RIESING K M, BILYEU B C, et al. On-orbit demonstration of 200-Gbps laser communication downlink from the TBIRD CubeSat[J]. Proceedings of SPIE, 2023, 12413: 1241302.
|
[5] |
谢军, 何锋赟, 王晶, 等. 经纬仪主镜轴向支撑结构仿真与优化[J]. 红外与金宝搏188软件怎么用
工程,2016,45(S1):S118001. doi: 10.3788/IRLA201645s1.118001
XIE J, HE F Y, WANG J, et al. Simulation and optimization of axial supporting structures for theodolite primary mirror[J]. Infrared and Laser Engineering, 2016, 45(S1): S118001. (in Chinese). doi: 10.3788/IRLA201645s1.118001
|
[6] |
赵天骄, 乔彦峰, 孙宁, 等. 经纬仪主镜在支撑系统下的面形变化[J]. 中国光学,2017,10(4):477-483. doi: 10.3788/co.20171004.0477
ZHAO T J, QIAO Y F, SUN N, et al. Surface deformation of theodolite primary mirror under the support system[J]. Chinese Optics, 2017, 10(4): 477-483. (in Chinese). doi: 10.3788/co.20171004.0477
|
[7] |
张岩, 陈宝刚, 李洪文, 等. 700mm光学望远镜结构设计与分析[J]. 光学技术,2020,46(4):385-390.
ZHANG Y, CHEN B G, LI H W, et al. Structure design and analysis of 700mm apertureoptical telescope[J]. Optical Technique, 2020, 46(4): 385-390. (in Chinese).
|
[8] |
李鑫, 袁健, 龚小雪, 等. 外场热环境作用下地基望远镜温度分布预测[J]. 金宝搏188软件怎么用
与红外,2023,53(4):589-596.
LI X, YUAN J, GONG X X, et al. Prediction of temperature distribution of ground-based telescopes under the influence of external thermal environment[J]. Laser & Infrared, 2023, 53(4): 589-596. (in Chinese).
|
[9] |
王洪浩, 王建立, 陈涛, 等. 地基大口径望远镜重力弯曲引起的指向变化检测与修正[J]. 光学 精密工程,2022,30(23):3021-3030. doi: 10.37188/OPE.20223023.3021
WANG H H, WANG J L, CHEN T, et al. Measurement and calibration of optical axis changes caused by gravity for ground-based large-aperture telescope[J]. Optics Precision Engineering, 2022, 30(23): 3021-3030. (in Chinese). doi: 10.37188/OPE.20223023.3021
|
[10] |
郭骏立, 安源, 李宗轩, 等. 空间相机反射镜组件的胶结技术[J]. 红外与金宝搏188软件怎么用
工程,2016,45(3):0313002. doi: 10.3788/irla201645.0313002
GUO J L, AN Y, LI Z X, et al. Bonding technique of mirror components in space camera[J]. Infrared and Laser Engineering, 2016, 45(3): 0313002. (in Chinese). doi: 10.3788/irla201645.0313002
|
[11] |
范志刚, 常虹, 陈守谦. 透镜无热装配中粘结层的设计[J]. 光学精密工程,2011,19(11):2573-2581. doi: 10.3788/OPE.20111911.2573
FAN ZH G, CHANG H, CHEN SH Q. Design of bonding layer in lens athermal mount[J]. Optics Precision Engineering, 2011, 19(11): 2573-2581. (in Chinese). doi: 10.3788/OPE.20111911.2573
|
[12] |
武永见, 刘涌, 孙欣. 柔性支撑式空间反射镜胶接应力分析与消除[J]. 红外与金宝搏188软件怎么用
工程,2022,51(4):20210496. doi: 10.3788/IRLA20210496
WU Y J, LIU Y, SUN X. Analysis and elimination of adhesive bonding force of flexible supported space mirror[J]. Infrared and Laser Engineering, 2022, 51(4): 20210496. (in Chinese). doi: 10.3788/IRLA20210496
|
[13] |
张家齐, 郭艺博, 张友建, 等. 机载宽温条件下反射镜组件与粘接层设计[J]. 中国光学(中英文),2023,16(3):578-586. doi: 10.37188/CO.2022-0194
ZHANG J Q, GUO Y B, ZHANG Y J, et al. Design of reflector assembly and adhesive layer under airborne wide temperature conditions[J]. Chinese Optics, 2023, 16(3): 578-586. (in Chinese). doi: 10.37188/CO.2022-0194
|
[14] |
袁健, 张雷, 姜启福, 等. 1.2 m高轻量化率主反射镜镜坯结构设计[J]. 光电工程,2023,50(4):41-51.
YUAN J, ZHANG L, JIANG Q F, et al. Structure design of 1.2 m high lightweight primary mirror blank[J]. Opto-Electronic Engineering, 2023, 50(4): 41-51. (in Chinese).
|
[15] |
袁健, 张雷. 大型离轴三反相机主镜组件结构设计与验证[J]. 红外与金宝搏188软件怎么用
工程,2023,52(1):20220363. doi: 10.3788/IRLA20220363
YUAN J, ZHANG L. Structure design and verification of primary mirror assembly for large off-axis TMA camera[J]. Infrared and Laser Engineering, 2023, 52(1): 20220363. (in Chinese). doi: 10.3788/IRLA20220363
|
[16] |
谭淞年, 王福超, 许永森, 等. 航空光电平台两轴快速反射镜结构设计[J]. 光学 精密工程,2022,30(11):1344-1352. doi: 10.37188/OPE.20213000.0757
TAN S N, WANG F CH, XU Y S, et al. Structure design of two-axis fast steering mirror for aviation optoelectronic platform[J]. Optics Precision Engineering, 2022, 30(11): 1344-1352. (in Chinese). doi: 10.37188/OPE.20213000.0757
|