Turn off MathJax
Article Contents
ZHANG Jiong-yang, ZHAI Hao, WANG Ji, XIAO Yu-hua, DAI Hu, LIAN Ji-qing, YANG Shi-yu, CHEN Jiang, LIU Zhi-dong. Rubidium atomic optical frequency standard based on two-photon transition[J]. Chinese Optics. doi: 10.37188/CO.2024-0120
Citation: ZHANG Jiong-yang, ZHAI Hao, WANG Ji, XIAO Yu-hua, DAI Hu, LIAN Ji-qing, YANG Shi-yu, CHEN Jiang, LIU Zhi-dong. Rubidium atomic optical frequency standard based on two-photon transition[J]. Chinese Optics. doi: 10.37188/CO.2024-0120

Rubidium atomic optical frequency standard based on two-photon transition

Funds:  Supported by The Project of National Defence Innovation Zone of Science and Technology Commission of CMC, China (No. 23-XXXX-015);The Qian Xuesen Youth Innovation Fund of China Aerospace Science and Technology Corporation;The Project of Leading Talents of Gansu Province (No. 2023-LJRC-366);The National Natural Science Foundation of China (No. U2341247)
More Information
  • Corresponding author: 20138295@qq.com
  • Received Date: 12 Jul 2024
  • Accepted Date: 08 Oct 2024
  • Available Online: 16 Oct 2024
  • Precise timing plays a vital roel in national economic development, scientific and technological progress, national defense and military security. The optical frequency standard based on two-photon transition is expected to become a practical miniaturized optical frequency standard due to its significant advantages such as high stability, good reproducibility and easy miniaturization. In this paper, the basic principle of two-photon transition is briefly described, and the research status and progress of rubidium atomic optical frequency standards based on two-photon transition at home and abroad are introduced. Finally, it is concluded that the future development trends of rubidium atomic optical frequency standards based on two-photon transition is system miniaturization, performance improvement, integrated application and engineering.

     

  • loading
  • [1]
    BOTHWELL T, KENNEDY C J, AEPPLI A, et al. Resolving the gravitational redshift across a millimetre-scale atomic sample[J]. Nature, 2022, 602(7897): 420-424. doi: 10.1038/s41586-021-04349-7
    [2]
    ASHBY N, HEAVNER T P, JEFFERTS S R, et al. Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers[J]. Physical Review Letters, 2007, 98(7): 070802. doi: 10.1103/PhysRevLett.98.070802
    [3]
    孙和平, 杨元喜, 叶朝辉, 等. 精密(量子)测量时代下时空基准研究中的关键科学问题和核心技术[J]. 中国科学基金,2024,38(1):172-181.

    SUN H P, YANG Y X, YE ZH H, et al. Key scientific frontiers and core technologies in space-time reference research in the era of precision (quantum) measurement[J]. Bulletin of National Natural Science Foundation of China, 2024, 38(1): 172-181. (in Chinese).
    [4]
    杨元喜, 任夏, 贾小林, 等. 以北斗系统为核心的国家安全PNT体系发展趋势[J]. 中国科学: 地球科学,2023,66(5):929-938.

    YANG Y X, REN X, JIA X L, et al. Development trends of the national secure PNT system based on BDS[J]. Science China Earth Sciences, 2023, 66(5): 929-938.
    [5]
    罗俊, 艾凌皓, 艾艳丽, 等. 天琴计划简介[J]. 中山大学学报(自然科学版),2021,60(1-2):1-19.

    LUO J, AI L H, AI Y L, et al. A brief introduction to the TianQin project[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(1-2): 1-19. (in Chinese).
    [6]
    谢军, 郑晋军, 张弓, 等. 卫星导航系统发展现状与未来趋势[J]. 前瞻科技,2022,1(1):94-111. doi: 10.3981/j.issn.2097-0781.2022.01.009

    XIE J, ZHENG J J, ZHANG G, et al. Development status and future trend of satellite navigation systems[J]. Science and Technology Foresight, 2022, 1(1): 94-111. (in Chinese). doi: 10.3981/j.issn.2097-0781.2022.01.009
    [7]
    翟浩, 廉吉庆. 原子钟性能对卫星导航系统定位精度的影响分析[J]. 导航定位与授时,2021,8(5):118-123.

    ZHAI H, LIAN J Q. Analysis of the influence of atomic clock performance on positioning accuracy of satellite navigation systems[J]. Navigation Positioning and Timing, 2021, 8(5): 118-123. (in Chinese).
    [8]
    曹远洪, 杜润昌, 赵杏文, 等. 原子钟技术在电力系统应用——中国电力系统时间同步体系建设方案初探[C]. 第十二届中国卫星导航年会论文集——S05空间基准与精密定位, 中国卫星导航系统管理办公室学术交流中心, 2021: 8.

    CAO Y H, DU R CH, ZHAO X W, et al. Application of atomic clock technology in grid system —preliminary study on construction of time synchronization system in China grid[C]. The 12th China Satellite Navigation Annual Conference, China Satellite Navigation Office Academic Exchange Center, 2021: 8. (in Chinese) (查阅网上资料, 未找到标黄信息, 请确认) .
    [9]
    王勇征, 田映东, 彭刚, 等. 铯原子钟在通信网中的应用研究[J]. 数码设计,2021,10(1):59.

    WANG Y ZH, TIAN Y D, PENG G, et al. Research on the application of cesium atomic clock in communication network[J]. Digital Insige, 2021, 10(1): 59. (in Chinese) (查阅网上资料, 未找到标黄信息, 请确认) .
    [10]
    SCHULDT T, DÖRINGSHOFF K, OSWALD M, et al. Absolute laser frequency stabilization for LISA[J]. International Journal of Modern Physics D, 2019, 28(12): 1845002. doi: 10.1142/S0218271818450025
    [11]
    CUI J Q, MING G, WANG F, et al. Realization of a rubidium atomic frequency standard with short-term stability in 10−14 τ−1/2 level[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1500507.
    [12]
    崔敬忠, 杨坦, 张玲, 等. 真空环境下铷钟性能的研究[J]. 真空与低温,2016,22(5):271-274,295. doi: 10.3969/j.issn.1006-7086.2016.05.005

    CUI J ZH, YANG T, ZHANG L, et al. Study of the performance of rubidium frquency standard in vacuum environment[J]. Vacuum and Cryogenics, 2016, 22(5): 271-274,295. (in Chinese). doi: 10.3969/j.issn.1006-7086.2016.05.005
    [13]
    JEANMAIRE A, ROCHAT P, EMMA F. Rubidium atomic clock for Galileo[C]. Proceedings of the 31th Annual Precise Time and Time Interval Systems and Applications Meeting, 1999: 627-636. (查阅网上资料, 未找到出版社信息, 请补充) .
    [14]
    陈江, 刘志栋, 王骥, 等. 一种超小型磁选态铯原子钟[J]. 时间频率学报,2022,45(1):9-14.

    CHEN J, LIU ZH D, WANG J, et al. Small compact magnetically state-selected cesium atomic clock[J]. Journal of Time and Frequency, 2022, 45(1): 9-14. (in Chinese).
    [15]
    赵杏文, 韦强, 李东旭, 等. 金宝搏188软件怎么用 抽运小型铯原子钟研制进展[J]. 时间频率学报,2022,45(1):1-8.

    ZHAO X W, WEI Q, LI D X, et al. Progress on optically pumped cesium beam frequency standard[J]. Journal of Time and Frequency, 2022, 45(1): 1-8. (in Chinese).
    [16]
    CHADSEY H, KUBIK A. Maintenance of HP 5071A primary frequency standards at USNO[C]. Proceedings of Precise Time Time Interval Syst. Appl. Meeting, 1997: 49-59. (查阅网上资料, 未能确认标黄信息, 未找到出版社信息, 请核对并补充) .
    [17]
    王骥, 黄良育, 陈江, 等. 磁选态铯原子频率标准技术研制进展[J]. 时间频率学报,2022,45(1):15-25.

    WANG J, HUANG L Y, CHEN J, et al. Progress on cesium atomic frequency standard with magnetic state-selection technology[J]. Journal of Time and Frequency, 2022, 45(1): 15-25. (in Chinese).
    [18]
    何克亮, 张为群, 林传富. 主动型氢原子钟的研究进展[J]. 天文学进展,2017,35(3):345-366. doi: 10.3969/j.issn.1000-8349.2017.03.05

    HE K L, ZHANG W Q, LIN CH F. Progresses in researches of active hydrogen atomic clock[J]. Progress in Astronomy, 2017, 35(3): 345-366. (in Chinese). doi: 10.3969/j.issn.1000-8349.2017.03.05
    [19]
    POLYAKOV V, TIMOFEEV Y, DEMIDOV N. Frequency stability improvement of an active hydrogen maser with a single-state selection system[C]. 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium, IEEE, 2021: 1-4.
    [20]
    郑贺斐, 李晶, 冯克明, 等. 被动型氢原子钟单频调制的鉴频特性研究[J]. 中国金宝搏188软件怎么用 ,2018,45(3):0311001. doi: 10.3788/CJL201845.0311001

    ZHENG H F, LI J, FENG K M, et al. Frequency discrimination for passive hydrogen maser based on single frequency modulation[J]. Chinese Journal of Lasers, 2018, 45(3): 0311001. (in Chinese). doi: 10.3788/CJL201845.0311001
    [21]
    WEYERS S, GERGINOV V, KAZDA M, et al. Advances in the accuracy, stability, and reliability of the PTB primary fountain clocks[J]. Metrologia, 2018, 55(6): 789-805. doi: 10.1088/1681-7575/aae008
    [22]
    GUENA J, ABGRALL M, ROVERA D, et al. Progress in atomic fountains at LNE-SYRTE[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(3): 391-410. doi: 10.1109/TUFFC.2012.2208
    [23]
    PELLE B, ARCHAMBAULT L, DESRUELLE B, et al. Cold-atom-based commercial microwave clocks at 1× 10−15 relative instability over more than one month[C]. 2022 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium, IEEE, 2022: 1-4.
    [24]
    陈伟亮, 刘昆, 郑发松, 等. 长期稳定度2.6×10−16的工程化高可靠铷原子喷泉钟[J]. 仪器仪表学报,2024,45(2):79-86.

    CHEN W L, LIU K, ZHENG F S, et al. Enineering highly reliable Rb fountain clock with a long-term instability of 2.6×10−16[J]. Chinese Journal of Scientific Instrument, 2024, 45(2): 79-86. (in Chinese).
    [25]
    李慧, 杜远博, 刘洪力, 等. 用于本地时标系统的铯原子喷泉钟研制[J]. 华中科技大学学报(自然科学版),2022,50(9):23-29.

    LI H, DU Y B, LIU H L, et al. Development of cesium fountain clock as local precision time and frequency standard[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2022, 50(9): 23-29. (in Chinese).
    [26]
    LIU L, LU D SH, CHEN W B, et al. In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms[J]. Nature Communications, 2018, 9(1): 2760. doi: 10.1038/s41467-018-05219-z
    [27]
    REN W, LI T, QU Q ZH, et al. Development of a space cold atom clock[J]. National Science Review, 2020, 7(12): 1828-1836. doi: 10.1093/nsr/nwaa215
    [28]
    LIU P, MENG Y L, WAN J Y, et al. Scheme for a compact cold-atom clock based on diffuse laser cooling in a cylindrical cavity[J]. Physical Review A, 2015, 92(6): 062101. doi: 10.1103/PhysRevA.92.062101
    [29]
    MENG Y L, JIANG X J, WU J, et al. Satellite-borne atomic clock based on diffuse laser-cooled atoms[J]. Frontiers in Physics, 2022, 10: 985586. doi: 10.3389/fphy.2022.985586
    [30]
    ESNAULT F X, ROSSETTO N, HOLLEVILLE D, et al. HORACE: a compact cold atom clock for Galileo[J]. Advances in Space Research, 2011, 47(5): 854-858. doi: 10.1016/j.asr.2010.12.012
    [31]
    BURT E A, PRESTAGE J D, TJOELKER R L, et al. Demonstration of a trapped-ion atomic clock in space[J]. Nature, 2021, 595(7865): 43-47. doi: 10.1038/s41586-021-03571-7
    [32]
    曹士英, 房芳. 秒定义变革及我国时间频率基准的发展和应对[J]. 信息通信技术与政策,2022,48(7):2-8. doi: 10.12267/j.issn.2096-5931.2022.07.001

    CAO SH Y, FANG F. Redefinition of unit of time and research progress of primary frequency standard in NIM[J]. Information and Communications Technology and Policy, 2022, 48(7): 2-8. (in Chinese). doi: 10.12267/j.issn.2096-5931.2022.07.001
    [33]
    BOTHWELL T, KEDAR D, OELKER E, et al. JILA SrI optical lattice clock with uncertainty of 2.0×10−18[J]. Metrologia, 2019, 56(6): 065004. doi: 10.1088/1681-7575/ab4089
    [34]
    MCGREW W F, ZHANG X, FASANO R J, et al. Atomic clock performance enabling geodesy below the centimetre level[J]. Nature, 2018, 564(7734): 87-90. doi: 10.1038/s41586-018-0738-2
    [35]
    LI J, CUI X Y, JIA ZH P, et al. A strontium lattice clock with both stability and uncertainty below 5×10−18[J]. Metrologia, 2024, 61(1): 015006. doi: 10.1088/1681-7575/ad1a4c
    [36]
    BREWER S M, CHEN J S, HANKIN A M, et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18[J]. Physical Review Letters, 2019, 123(3): 033201. doi: 10.1103/PhysRevLett.123.033201
    [37]
    DIDDAMS S A, JONES D J, YE J, et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb[J]. Physical Review Letters, 2000, 84(22): 5102-5105. doi: 10.1103/PhysRevLett.84.5102
    [38]
    DEL’HAYE P, SCHLIESSER A, ARCIZET O, et al. Optical frequency comb generation from a monolithic microresonator[J]. Nature, 2007, 450(7173): 1214-1217. doi: 10.1038/nature06401
    [39]
    GIORGI G, SCHMIDT T D, TRAINOTTI C, et al. Advanced technologies for satellite navigation and geodesy[J]. Advances in Space Research, 2019, 64(6): 1256-1273. doi: 10.1016/j.asr.2019.06.010
    [40]
    POLI N, SCHIOPPO M, VOGT S, et al. A transportable strontium optical lattice clock[J]. Applied Physics B, 2014, 117(4): 1107-1116. doi: 10.1007/s00340-014-5932-9
    [41]
    KONG D H, WANG ZH H, GUO F, et al. A transportable optical lattice clock at the national time service center[J]. Chinese Physics B, 2020, 29(7): 070602. doi: 10.1088/1674-1056/ab9290
    [42]
    ZHANG H Q, HUANG Y, ZHANG B L, et al. Absolute frequency measurements with a robust, transportable 40Ca+ optical clock[J]. Metrologia, 2023, 60(3): 035004. doi: 10.1088/1681-7575/acd05d
    [43]
    任洁, 谭巍, 郭峰, 等. 空间锶原子光钟磁场分析及主动补偿系统[J]. 光学 精密工程,2022,30(11):1337-1343. doi: 10.37188/OPE.20223011.1337

    REN J, TAN W, GUO F, et al. Magnetic field analysis and active compensation system for strontium optical lattice clock in space[J]. Optics and Precision Engineering, 2022, 30(11): 1337-1343. (in Chinese). doi: 10.37188/OPE.20223011.1337
    [44]
    DÖRINGSHOFF K, GUTSCH F B, SCHKOLNIK V, et al. Iodine frequency reference on a sounding rocket[J]. Physical Review Applied, 2019, 11(5): 054068. doi: 10.1103/PhysRevApplied.11.054068
    [45]
    ZHANG ZH Q, WANG ZH Y, LIU H L, et al. An ultra-stable laser based on molecular iodine with a short-term instability of 3.3×10−15 for space based gravity missions[J]. Classical and Quantum Gravity, 2023, 40(22): 225001. doi: 10.1088/1361-6382/acfec2
    [46]
    ZANG E J, CAO J P, LI Y, et al. Realization of four-pass I2 absorption cell in 532-nm optical frequency standard[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(2): 673-676. doi: 10.1109/TIM.2007.890816
    [47]
    DÖRINGSHOFF K, SCHULDT T, KOVALCHUK E V, et al. A flight-like absolute optical frequency reference based on iodine for laser systems at 1064 nm[J]. Applied Physics B, 2017, 123(6): 183. doi: 10.1007/s00340-017-6756-1
    [48]
    LEE S, MOON G, PARK S E, et al. Laser frequency stabilization in the 10−14 range via optimized modulation transfer spectroscopy on the 87 Rb D2 line[J]. Optics Letters, 2023, 48(4): 1020-1023. doi: 10.1364/OL.480178
    [49]
    ZHANG SH N, ZHANG X G, CUI J ZH, et al. Compact Rb optical frequency standard with 10−15 stability[J]. Review of Scientific Instruments, 2017, 88(10): 103106. doi: 10.1063/1.5006962
    [50]
    QI X H, CHEN W L, LIN Y, et al. Ultra-stable rubidium-stabilized external-cavity diode laser based on the modulation transfer spectroscopy technique[J]. Chinese Physics Letters, 2009, 26(4): 044205. doi: 10.1088/0256-307X/26/4/044205
    [51]
    KERSTEN P, MENSING F, STERR U, et al. A transportable optical calcium frequency standardDedicated to J. Helmcke on the occasion of his 60th birthday[J]. Applied Physics B, 1999, 68(1): 27-38. doi: 10.1007/s003400050582
    [52]
    SHANG H S, ZHANG X G, ZHANG SH N, et al. Miniaturized calcium beam optical frequency standard using fully-sealed vacuum tube with 10−15 instability[J]. Optics Express, 2017, 25(24): 30459-30467. doi: 10.1364/OE.25.030459
    [53]
    QUINN T J. Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001)[J]. Metrologia, 2003, 40(2): 103-133. doi: 10.1088/0026-1394/40/2/316
    [54]
    HILICO L, FELDER R, TOUAHRI D, et al. Metrological features of the rubidium two-photon standards of the BNM-LPTF and Kastler Brossel Laboratories[J]. The European Physical Journal: Applied Physics, 1998, 4(2): 219-225. doi: 10.1051/epjap:1998263
    [55]
    MARTIN K W, PHELPS G, LEMKE N D, et al. Compact optical atomic clock based on a two-photon transition in rubidium[J]. Physical Review Applied, 2018, 9(1): 014019. doi: 10.1103/PhysRevApplied.9.014019
    [56]
    JANA S, SAHOO B K, SHARMA A. Progress towards the development of a portable all-optical atomic clock based on a two-photon transition in warm atomic vapor[C]. 2022 URSI Regional Conference on Radio Science, IEEE, 2022: 1-4.
    [57]
    孟一鸣, 项静峰, 徐斌, 等. 铷87原子双光子跃迁光谱稳频特性研究[J]. 中国金宝搏188软件怎么用 ,2023,50(23):2301013.

    MENG Y M, XIANG J F, XU B, et al. Frequency stabilization characteristics of 87Rb two-photon transition spectrum[J]. Chinese Journal of Lasers, 2023, 50(23): 2301013. (in Chinese).
    [58]
    CHU C H, SHIH Y J, CHANG P CH, et al. Frequency of the unmodulated 778-nm rubidium clock measured in high vacuum[C]. 2023 Conference on Lasers and Electro-Optics, IEEE, 2023: 1-2.
    [59]
    NEZ F, PLIMMER M D, BOURZEIX S, et al. First pure frequency measurement of an optical transition in atomic hydrogen: better determination of the Rydberg constant[J]. Europhysics Letters, 1993, 24(8): 635-640. doi: 10.1209/0295-5075/24/8/003
    [60]
    SCHWOB C, JOZEFOWSKI L, DE BEAUVOIR B, et al. Optical frequency measurement of the 2S-12D transitions in hydrogen and deuterium: rydberg constant and lamb shift determinations[J]. Physical Review Letters, 1999, 82(25): 4960-4963. doi: 10.1103/PhysRevLett.82.4960
    [61]
    KIRAN KUMAR P V, SURYANARAYANA M V. Precision two-photon spectroscopy of alkali elements[J]. Pramana, 2014, 83(2): 189-219. doi: 10.1007/s12043-014-0789-3
    [62]
    JADUSZLIWER B, CAMPARO J. Past, present and future of atomic clocks for GNSS[J]. GPS Solutions, 2021, 25(1): 27. doi: 10.1007/s10291-020-01059-x
    [63]
    VASILENKO L S, CHEBOTAEV V P, SHISHAEV A V. Line shape of two-photon absorption in a standing-wave field in a gas[J]. Journal of Experimental and Theoretical Physics Letters, 1970, 12(3): 113-116.
    [64]
    冯晨, 吕杭哲, 段剑, 等. 基于双光子光谱的光学频率标准[J]. 计测技术,2023,43(4):103-112. doi: 10.11823/j.issn.1674-5795.2023.04.08

    FENG CH, LYU H ZH, DUAN J, et al. Optical frequency standard based on two-photon spectroscopy[J]. Metrology & Measurement Technology, 2023, 43(4): 103-112. (in Chinese). doi: 10.11823/j.issn.1674-5795.2023.04.08
    [65]
    DEMTRÖDER W. Laser Spectroscopy 2: Experimental Techniques[M]. Berlin: Springer, 2008.
    [66]
    BIRABEN F, CAGNAC B, GRYNBERG G. Experimental evidence of two-photon transition without Doppler broadening[J]. Physical Review Letters, 1974, 32(12): 643-645. doi: 10.1103/PhysRevLett.32.643
    [67]
    SHENG D, PÉREZ GALVÁN A, OROZCO L A. Lifetime measurements of the 5d states of rubidium[J]. Physical Review A, 2008, 78(6): 062506. doi: 10.1103/PhysRevA.78.062506
    [68]
    范鹏瑞, 李一鸿, 李少华, 等. 利用铷原子双光子跃迁产生420nm蓝光的实验研究[J]. 量子光学学报,2017,23(2):144-150.

    FAN P R, LI Y H, LI SH H, et al. Experimental investigation on the 420 nm blue light generated by two-photon transition of Rb[J]. Journal of Quantum Optics, 2017, 23(2): 144-150. (in Chinese).
    [69]
    LEVENSON M D, BLOEMBERGEN N. Observation of two-photon absorption without doppler broadening on the 3S-5S transition in sodium vapor[J]. Physical Review Letters, 1974, 32(12): 645-648. doi: 10.1103/PhysRevLett.32.645
    [70]
    KATO Y, STOICHEFF B P. Two-photon absorption to highly excited D states of Rb atoms[J]. Journal of the Optical Society of America, 1976, 66(5): 490-492. doi: 10.1364/JOSA.66.000490
    [71]
    NEZ F, BIRABEN F, FELDER R, et al. Optical frequency determination of the hyperfine components of the 5S12-5D32 two-photon transitions in rubidium[J]. Optics Communications, 1993, 102(5-6): 432-438. doi: 10.1016/0030-4018(93)90417-4
    [72]
    FELDER R, TOUAHRI D, ACEF O, et al. Performance of a GaAlAs laser diode stabilized on a hyperfine component of two-photon transitions in rubidium at 778 nm[J]. Proceedings of SPIE, 1995, 2378: 52-57. doi: 10.1117/12.208244
    [73]
    SHUKLA V, NATH S K, NAIK V, et al. Studies on rubidium 5S-5d two-photon absorption[J]. Journal of Modern Optics, 2021, 68(6): 311-321. doi: 10.1080/09500340.2021.1894361
    [74]
    POULIN M, LATRASSE C, TOUAHRI D, et al. Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms[J]. Optics Communications, 2002, 207(1-6): 233-242. doi: 10.1016/S0030-4018(02)01354-8
    [75]
    EDWARDS C S, BARWOOD G P, MARGOLIS H S, et al. Development and absolute frequency measurement of a pair of 778 nm two-photon rubidium standards[J]. Metrologia, 2005, 42(5): 464-467. doi: 10.1088/0026-1394/42/5/018
    [76]
    RIEHLE F. Frequency Standards: Basics and Applications[M]. Weinheim: Wiley-VCH, 2004.
    [77]
    ZHU M, STANDRIDGE R W. Optical frequency standard for optical fiber communication based on the Rb 5s→ 5d two-photon transition[J]. Optics Letters, 1997, 22(10): 730-732. doi: 10.1364/OL.22.000730
    [78]
    AWAJI Y, NAKAGAWA K, DE LABACHELERIE M, et al. Optical frequency measurement of the H12C14N Lamb-dip-stabilized 1.5-μm diode laser[J]. Optics Letters, 1995, 20(19): 2024-2026. doi: 10.1364/OL.20.002024
    [79]
    TERRA O, HUSSEIN H. An ultra-stable optical frequency standard for telecommunication purposes based upon the 5S1/2→5D5/2 two-photon transition in Rubidium[J]. Applied Physics B, 2016, 122(2): 27. doi: 10.1007/s00340-015-6309-4
    [80]
    MAURICE V, NEWMAN Z L, DICKERSON S, et al. Miniaturized optical frequency reference for next-generation portable optical clocks[J]. Optics Express, 2020, 28(17): 24708-24720. doi: 10.1364/OE.396296
    [81]
    NEWMAN Z L, MAURICE V, FREDRICK C, et al. High-performance, compact optical standard[J]. Optics Letters, 2021, 46(18): 4702-4705. doi: 10.1364/OL.435603
    [82]
    NEWMAN Z L, MAURICE V, DRAKE T, et al. Architecture for the photonic integration of an optical atomic clock[J]. Optica, 2019, 6(5): 680-685. doi: 10.1364/OPTICA.6.000680
    [83]
    COTE K, JACKSON S, ZAZO R, et al. The stratospheric optical rubidium clock experiment[C]. 70th International Astronautical Congress, IAF, 2019.
    [84]
    PERRELLA C, LIGHT P S, ANSTIE J D, et al. Dichroic two-photon rubidium frequency standard[J]. Physical Review Applied, 2019, 12(5): 054063. doi: 10.1103/PhysRevApplied.12.054063
    [85]
    LOCKE C R, NG S, SCARABEL J, et al. Portable optical atomic clock based on a dichroic two-photon transition in rubidium[C]. 2023 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium, IEEE, 2023: 1-2.
    [86]
    ZHANG S Y, WU J T, ZHANG Y L, et al. Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms[J]. Scientific Reports, 2015, 5: 15114. doi: 10.1038/srep15114
    [87]
    WU J T, HOU D, QIN ZH Y, et al. Observation of Rb two-photon absorption directly excited by an erbium-fiber-laser-based optical frequency comb via spectral control[J]. Physical Review A, 2014, 89(4): 041402(R).
    [88]
    LENG J X, XU H, LU H Y, et al. Optical communication frequency standard using a fiber laser to excite cold rubidium two-photon transition[J]. Journal of the Optical Society of America B, 2019, 36(5): 1183-1188. doi: 10.1364/JOSAB.36.001183
    [89]
    LI D, LIU K Q, WANG P F, et al. Dual-interrogation method for suppressing light shift in Rb 778 nm two-photon transition optical frequency standard[J]. Optics Express, 2024, 32(2): 2766-2773. doi: 10.1364/OE.512205
    [90]
    王铿淇, 郭进先. 基于铷原子双光子跃迁的原子谱线展宽机制教学演示[J]. 物理与工程,2023,33(2):119-125. doi: 10.3969/j.issn.1009-7104.2023.02.019

    WANG K Q, GUO J X. Teaching demonstration of spectrum broadening in two-photo transition of RB[J]. Physics and Engineering, 2023, 33(2): 119-125. (in Chinese). doi: 10.3969/j.issn.1009-7104.2023.02.019
    [91]
    ZHANG Y CH, WU J ZH, LI Y Q, et al. A direct frequency comb for two-photon transition spectroscopy in a cesium vapor[J]. Chinese Physics B, 2012, 21(11): 113701. doi: 10.1088/1674-1056/21/11/113701
    [92]
    ZHANG Y CH, FAN P R, YUAN J P, et al. High-resolution rb two-photon transition spectroscopy by a femtosecond frequency comb via pulses control[J]. Chinese Physics Letters, 2016, 33(11): 113201. doi: 10.1088/0256-307X/33/11/113201
    [93]
    https://afresearchlab.com/technology/nts-3. (查阅网上资料,请补充完整信息) .
    [94]
    LEMKE N D, PHELPS G, BURKE J H, et al. The optical rubidium atomic frequency standard at AFRL[C]. 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium, IEEE, 2017: 466-467.
    [95]
    LEMKE N D, MARTIN K W, BEARD R, et al. Measurement of optical rubidium clock frequency spanning 65 days[J]. Sensors, 2022, 22(5): 1982. doi: 10.3390/s22051982
    [96]
    TERRA O, HUSSEIN H. An ultra-stable optical frequency standard for telecommunication purposes based upon the 5S1/2→5D5/2 two-photon transition in rubidium[J]. Applied Physics B, 2016, 122(2): 27. (查阅网上资料, 本条文献和第79条文献重复, 请核对) .
    [97]
    GERGINOV V, BELOY K. Two-photon optical frequency reference with active ac Stark shift cancellation[J]. Physical Review Applied, 2018, 10(1): 014031. doi: 10.1103/PhysRevApplied.10.014031
    [98]
    NGUYEN T N, SCHIBLI T R. Temperature-shift-suppression scheme for two-photon two-color rubidium vapor clocks[J]. Physical Review A, 2022, 106(5): 053104. doi: 10.1103/PhysRevA.106.053104
    [99]
    薛文祥, 陈江, 杜志静, 等. 温度对POP Rb原子钟性能影响的研究[J]. 时间频率学报,2012,35(3):129-136. doi: 10.3969/j.issn.1674-0637.2012.03.001

    XUE W X, CHEN J, DU ZH J, et al. Study of the temperature effect on POP Rb atomic clock[J]. Journal of Time and Frequency, 2012, 35(3): 129-136. (in Chinese). doi: 10.3969/j.issn.1674-0637.2012.03.001
    [100]
    ROSLUND J D, CINGÖZ A, LUNDEN W D, et al. Optical clocks at sea[J]. Nature, 2024, 628(8009): 736-740. doi: 10.1038/s41586-024-07225-2
    [101]
    沈自才, 崔云, 牛锦超. 金宝搏188软件怎么用 技术在航天工程中的应用及对策[J]. 红外与金宝搏188软件怎么用 工程,2012,41(10):2703-2711. doi: 10.3969/j.issn.1007-2276.2012.10.028

    SHEN Z C, CUI Y, NIU J CH. Applications and countermeasures of laser technology in space engineering[J]. Infrared and Laser Engineering, 2012, 41(10): 2703-2711. (in Chinese). doi: 10.3969/j.issn.1007-2276.2012.10.028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article views(136) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map