Citation: | XIE Jia-ling, YAN Kai, TAN Jia, CAO Zhao-liang, HAO Xiang. Decoherence of temporal quantum correlation in electrically controllable quantum-dots molecules[J].Chinese Optics, 2023, 16(5): 1206-1214.doi:10.37188/CO.EN-2022-0025 |
The decoherence of temporal quantum correlation is explored in a voltage-controlled quantum dots molecule coupled to a cavity. The temporal correlation in the optoelectronic hybrid system is studied based on Leggett-Garg inequalities. The inequality violations can be interpreted as the existence of temporal quantum correlation during dynamical evolution. The temporal quantum correlation is enhanced by its electron tunnel’s strength and cavity frequency detuning. It is found that there is no temporal quantum correlation in the regions where the values of spatial quantum correlation are zero and the maximal violations occur in conditions with high values of quantum correlation. In contrast, the spatial quantum coherence can still exsit when the value of temporal quantum correlation is zero. The method of open quantum system dynamic is used to study the effect of reservoir memory on temporal quantum correlation. The temporal quantum correlation can be suppressed due to the spontaneous decay of the quantum dots and cavity leakage. These results are helpful for quantum information processing technology in hybrid quantum systems.
[1] |
HORODECKI R, HORODECKI P, HORODECKI M,
et al. Quantum entanglement[J].
Reviews of Modern Physics, 2009, 81(2): 865-942.
doi:10.1103/RevModPhys.81.865
|
[2] |
NIELSEN M A, CHUANG I L.
Quantum Computation and Quantum Information[M]. Cambridge: Cambridge University Press, 2010.
|
[3] |
ALICKI R, FANNES M. Entanglement boost for extractable work from ensembles of quantum batteries[J].
Physical Review E, 2013, 87(4): 042123.
doi:10.1103/PhysRevE.87.042123
|
[4] |
PRESKILL J. Quantum computing in the NISQ era and beyond. quantum: the open journal for quantum science[J].
Quantum, 2018, 2: 79.
doi:10.22331/q-2018-08-06-79
|
[5] |
PEREIRA E. Perfect thermal rectification in a many-body quantum Ising model[J].
Physical Review E, 2019, 99(3): 032116.
|
[6] |
MODI K, BRODUTCH A, CABLE H,
et al. The classical-quantum boundary for correlations: discord and related measures[J].
Reviews of Modern Physics, 2012, 84: 1655-1707.
doi:10.1103/RevModPhys.84.1655
|
[7] |
BRUNNER N, CAVALCANTI D, PIRONIO S,
et al. Bell nonlocality[J].
Reviews of Modern Physics, 2014, 86(2): 419-478.
doi:10.1103/RevModPhys.86.419
|
[8] |
CLEMENTE L, KOFLER J. No fine theorem for macrorealism: limitations of the Leggett-Garg inequality[J].
Physical Review Letters, 2016, 116(15): 150401.
doi:10.1103/PhysRevLett.116.150401
|
[9] |
BELL J S. On the Einstein Podolsky Rosen paradox[J].
Physics Physique Fizika, 1964, 1(3): 195-200.
doi:10.1103/PhysicsPhysiqueFizika.1.195
|
[10] |
CLAUSER J F, SHIMONY A. Bell's theorem. Experimental tests and implications[J].
Reports on Progress in Physics, 1978, 41(12): 1881-1927.
doi:10.1088/0034-4885/41/12/002
|
[11] |
HILL S A, WOOTTERS W K. Entanglement of a pair of quantum bits[J].
Physical Review Letters, 1997, 78(26): 5022-5025.
doi:10.1103/PhysRevLett.78.5022
|
[12] |
WOOTTERS W K. Entanglement of formation of an arbitrary state of two qubits[J].
Physical Review Letters, 1998, 80(10): 2245-2248.
doi:10.1103/PhysRevLett.80.2245
|
[13] |
OLLIVIER H, ZUREK W H. Quantum discord: a measure of the quantumness of correlations[J].
Physical Review Letters, 2001, 88(1): 017901.
doi:10.1103/PhysRevLett.88.017901
|
[14] |
HENDERSON L, VEDRAL V. Classical, quantum and total correlations[J].
Journal of Physics A:
Mathematical and General, 2001, 34(35): 6899-6905.
doi:10.1088/0305-4470/34/35/315
|
[15] |
BAUMGRATZ T, CRAMER M, PLENIO M B. Quantifying coherence[J].
Physical Review Letters, 2014, 113(14): 140401.
doi:10.1103/PhysRevLett.113.140401
|
[16] |
SINGH U, BERA M N, DHAR H S,
et al. Maximally coherent mixed states: complementarity between maximal coherence and mixedness[J].
Physical Review A, 2015, 91(5): 052115.
doi:10.1103/PhysRevA.91.052115
|
[17] |
ZHAO M J, MA T, QUAN Q,
et al.
|
[18] |
BEYER K, UOLA R, LUOMA K,
et al. Joint measurability in nonequilibrium quantum thermodynamics[J].
Physical Review E, 2022, 106(2): L022101.
doi:10.1103/PhysRevE.106.L022101
|
[19] |
LUO SH L. Quantum discord for two-qubit systems[J].
Physical Review A, 2008, 77(4): 042303.
doi:10.1103/PhysRevA.77.042303
|
[20] |
LEGGETT A J, GARG A. Quantum mechanics versus macroscopic realism: is the flux there when nobody looks?[J].
Physical Review Letters, 1985, 54(9): 857-860.
doi:10.1103/PhysRevLett.54.857
|
[21] |
EMARY C, LAMBERT N, NORI F. Leggett–Garg inequalities[J].
Reports on Progress in Physics, 2014, 77(1): 016001.
doi:10.1088/0034-4885/77/1/016001
|
[22] |
HUELGA S F, MARSHALL T W, SANTOS E. Proposed test for realist theories using Rydberg atoms coupled to a high-
Qresonator[J].
Physical Review A, 1995, 52(4): R2497-R2500.
doi:10.1103/PhysRevA.52.R2497
|
[23] |
GOGGIN M E, ALMEIDA M P, BARBIERI M,
et al. Violation of the Leggett–Garg inequality with weak measurements of photons[J].
Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(4): 1256-1261.
doi:10.1073/pnas.1005774108
|
[24] |
GROEN J P, RISTÈ D, TORNBERG L,
et al. Partial-measurement backaction and nonclassical weak values in a superconducting circuit[J].
Physical Review Letters, 2013, 111(9): 090506.
doi:10.1103/PhysRevLett.111.090506
|
[25] |
SANTINI A, VITALE V. Experimental violations of Leggett-Garg inequalities on a quantum computer[J].
Physical Review A, 2022, 105(3): 032610.
doi:10.1103/PhysRevA.105.032610
|
[26] |
BUDRONI C, EMARY C. Temporal quantum correlations and Leggett-Garg inequalities in multilevel systems[J].
Physical Review Letters, 2014, 113(5): 050401.
doi:10.1103/PhysRevLett.113.050401
|
[27] |
KATIYAR H, BRODUTCH A, LU D W,
et al. Experimental violation of the Leggett–Garg inequality in a three-level system[J].
New Journal of Physics, 2017, 19: 023033.
doi:10.1088/1367-2630/aa5c51
|
[28] |
WANG K K, EMARY C, ZHAN X,
et al. Enhanced violations of Leggett-Garg inequalities in an experimental three-level system[J].
Optics Express, 2017, 25(25): 31462-31470.
doi:10.1364/OE.25.031462
|
[29] |
VILLAS-BÔAS J M, GOVOROV A O, ULLOA S E. Coherent control of tunneling in a quantum dot molecule[J].
Physical Review B, 2004, 69(12): 125342.
doi:10.1103/PhysRevB.69.125342
|
[30] |
MÜLLER K, BECHTOLD A, RUPPERT C,
et al. Electrical control of interdot electron tunneling in a double InGaAs quantum-dot nanostructure[J].
Physical Review Letters, 2012, 108(19): 197402.
doi:10.1103/PhysRevLett.108.197402
|
[31] |
BEIRNE G J, HERMANNSTÄDTER C, WANG L,
et al. Quantum light emission of two lateral tunnel-coupled (In, Ga)As/GaAs quantum dots controlled by a tunable static electric field[J].
Physical Review Letters, 2006, 96(13): 137401.
doi:10.1103/PhysRevLett.96.137401
|
[32] |
BEIRNE G J, HERMANNSTÄDTER C, WANG L J,
et al. Tunable lateral tunnel coupling between two self-assembled InGaAs quantum dots[J].
Proceedings of SPIE, 2007, 6471: 647104.
doi:10.1117/12.697165
|
[33] |
MAHDAVI M, SABEGH Z A, MOHAMMADI M,
et al. Manipulation and exchange of light with orbital angular momentum in quantum-dot molecules[J].
Physical Review A, 2020, 101(6): 063811.
doi:10.1103/PhysRevA.101.063811
|
[34] |
LÜ X Y, WU J, ZHENG L L,
et al. Voltage-controlled entanglement and quantum-information transfer between spatially separated quantum-dot molecules[J].
Physical Review A, 2011, 83(4): 042302.
doi:10.1103/PhysRevA.83.042302
|
[35] |
ZHENG A SH, CHENG Y J, LIU J B. Voltage-controlled multipartite entanglement with distant quantum dot molecules via adiabatic-varying tunnel coupling[J].
Journal of the Optical Society of America B, 2013, 30(12): 3168-3173.
doi:10.1364/JOSAB.30.003168
|
[36] |
HUA M, TAO M J, ALSAEDI A,
et al. Universal distributed quantum computing on superconducting qutrits with dark photons[J].
Annalen der Physik, 2018, 530(4): 1700402.
doi:10.1002/andp.201700402
|
[37] |
SCHALL J, DECONINCK M, BART N,
et al. Bright electrically controllable quantum-dot-molecule devices fabricated by in situ electron-beam lithography[J].
Advanced Quantum Technologies, 2021, 4(6): 2100002.
doi:10.1002/qute.202100002
|