Turn off MathJax
Article Contents
HAO R, GE A, TAO X, et al. Optical design of a high-mast luminaire based on four COB LED light source modules[J]. Lighting Research & Technology, 2019, 51(3): 447-456. (查阅网上资料, 本条文献与第14条文献重复, 请确认). doi: 10.37188/CO.EN-2023-0017
Citation: HAO R, GE A, TAO X, et al. Optical design of a high-mast luminaire based on four COB LED light source modules[J]. Lighting Research & Technology, 2019, 513): 447-456. (查阅网上资料, 本条文献与第14条文献重复, 请确认). doi: 10.37188/CO.EN-2023-0017

Optical simulation design of SMD beads for wide beam and high uniformity display

doi: 10.37188/CO.EN-2023-0017
Funds:  Supported by This study was supported by the following projects: “Dr. Shuangchuang” in the Jiangsu Province in 2021, project number JSSCBS20211145, “Research on New Micro-LED Chips for High Optoelectronic Properties,” and the 2022 open project “Research on Pulsed Dimmable LED Plant Lighting Fixtures” funded by the Jiangsu Intelligent Optoelectronic Device and Measurement and Control Engineering Research Center.
More Information
  • Author Bio:

    WEI Wei, male, Ph.D., lecturer at Yancheng Teachers University, mainly engaged in micro-LED device lighting design. E-mail: weiweipaper@126.com

  • Available Online: 18 Oct 2023
  • This study analyses the optical requirements of wide beam and high uniformity light beads, which are currently used in displays. Packaging micro light-emitting diode (LED) chips with a novel non-Lambertian distribution has facilitated the production of micro-LED chip light beads that are wide in beam and high in uniformity. The light output efficiency and beam angle of fixed beads were simulated using brackets made of copper, titanium, aluminium and silver, as well as materials that were completely reflecting and absorbing. The simulations were conducted at various fixture angles, packaging heights, sapphire thicknesses, and patterned sapphire substrate sizes. By adjusting the chip and packaging parameters, we can obtain one, two, or three light beams with SMD lamp beads characteristics that provide wide angles, high uniformity, and far-field light distribution. These characteristics can meet the current display requirements for LED and LCD.

     

  • loading
  • [1]
    ZOU G W, WANG Z Y, YANG W CH, et al. Image content adaptive color breakup suppression for field sequential color displays with mini-LED backlight enabled by deep learning. (查阅网上资料, 不确定文献类型, 请确认) .

    ZOU G W, WANG Z Y, YANG W CH, et al. . Image content adaptive color breakup suppression for field sequential color displays with mini-LED backlight enabled by deep learning. (查阅网上资料, 不确定文献类型, 请确认).
    [2]
    GAO ZH W, NING H L, YAO R H, et al. Mini-LED backlight technology progress for liquid crystal display[J]. Crystals, 2022, 12(3): 313. doi: 10.3390/cryst12030313
    [3]
    YANG ZH Y, HSIANG E L, QIAN Y ZH, et al. Performance comparison between mini-LED backlit LCD and OLED display for 15.6-inch notebook computers[J]. Applied Sciences, 2022, 12(3): 1239. doi: 10.3390/app12031239
    [4]
    ZOU G W, WANG Z Y, LIU Y T, et al. Deep learning-enabled image content-adaptive field sequential color LCDs with mini-LED backlight[J]. Optics Express, 2022, 30(12): 21044-21064. doi: 10.1364/OE.459752
    [5]
    HSIANG E L, YANG ZH Y, YANG Q, et al. Prospects and challenges of mini‐LED, OLED, and micro‐LED displays[J]. Journal of the Society for Information Display, 2021, 29(6): 446-465. doi: 10.1002/jsid.1058
    [6]
    MILLER M E. LCD display technology[M]//MILLER M E. Color in Electronic Display Systems: Advantages of Multi-primary Displays. Cham: Springer, 2019: 87-105.
    [7]
    ZOU G W, WANG Z Y, YANG W CH, et al. 65‐1: Deep learning‐enabled image content adaptive driving algorithm for field sequential color LCDs with mini‐LED backlight[J]. SID Symposium Digest of Technical Papers, 2022, 53(1): 857-860. doi: 10.1002/sdtp.15628
    [8]
    HUANG Y G, TAN G J, GOU F W et al. Prospects and challenges of mini‐LED and micro‐LED displays[J]. Journal of the Society for Information Display, 2019, 27(7): 387-401. doi: 10.1002/jsid.760
    [9]
    LEE J G, KO J H. Optimization of the optical structure of thin direct-lit LED backlights for LCD applications by using micro-LEDs[J]. Journal of Information Display, 2020, 21(1): 65-70. doi: 10.1080/15980316.2019.1693436
    [10]
    SHEN B, ASPELL J, RINEHART T, et al. P‐206: Late‐news‐poster: lattice patterned micro lens array (MLA) optical films for mini‐LED back light units (BLUs)[J]. SID Symposium Digest of Technical Papers, 2020, 51(1): 1649-1651. doi: 10.1002/sdtp.14211
    [11]
    HSIANG E L, LI Y N Q, HE Z Q, et al. Enhancing the efficiency of color conversion micro-LED display with a patterned cholesteric liquid crystal polymer film[J]. Nanomaterials, 2020, 10(12): 2430. doi: 10.3390/nano10122430
    [12]
    YU X J, XIANG L Y, ZHOU SH L, et al. Effect of refractive index of packaging materials on the light extraction efficiency of COB-LEDs with millilens array[J]. Applied Optics, 2021, 60(2): 306-311. doi: 10.1364/AO.410141
    [13]
    HUANG C G, HU M, ZHANG CH Y, et al. Narrow beam uniform illumination design of COB light source[J]. High Power Laser and Particle Beams, 2021, 33(2): 029002. (in Chinese).
    [14]
    HAO R, GE A, TAO X, et al. Optical design of a high-mast luminaire based on four COB LED light source modules[J]. Lighting Research & Technology, 2019, 51(3): 447-456.
    [15]
    HAO R, GE A, TAO X, et al. Optical design of a high-mast luminaire based on four COB LED light source modules[J]. Lighting Research & Technology, 2019, 513): 447-456. (查阅网上资料, 本条文献与第14条文献重复, 请确认).
    [16]
    QIU Y, CHEN H H, MENG W X. Channel modeling for visible light communications—a survey[J]. Wireless Communications and Mobile Computing, 2016, 16(14): 2016-2034. doi: 10.1002/wcm.2665
    [17]
    WANG K, CHEN F, LIU Z Y, et al. Design of compact freeform lens for application specific light-emitting diode packaging[J]. Optics Express, 2010, 18(2): 413-425. doi: 10.1364/OE.18.000413
    [18]
    KEMPER B, STÜRWALD S, REMMERSMANN C, et al. Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces[J]. Optics and Lasers in Engineering, 2008, 46(7): 499-507. doi: 10.1016/j.optlaseng.2008.03.007
    [19]
    GFELLER F R, BAPST U. Wireless in-house data communication via diffuse infrared radiation[J]. Proceedings of the IEEE, 1979, 67(11): 1474-1486. doi: 10.1109/PROC.1979.11508
    [20]
    GALEOTTI F, MRÓZ W, SCAVIA G, et al. Microlens arrays for light extraction enhancement in organic light-emitting diodes: A facile approach[J]. Organic Electronics, 2013, 14(1): 212-218. doi: 10.1016/j.orgel.2012.10.034
    [21]
    CARRASCOSA M, CUSSO F, AGULLO-LOPEZ F. Lambert emitters: a simple Monte-Carlo approach to optical diffusers[J]. European Journal of Physics, 1985, 6(3): 183-187. doi: 10.1088/0143-0807/6/3/011
    [22]
    WEI W, CHEN Y Y, WANG C X, et al. Simulation of far-field light distribution of micro-LED based on its structural parameters[J]. Materials, 2022, 15(24): 8854. doi: 10.3390/ma15248854
    [23]
    HSIANG E L, LI Y N Q, HE Z Q, et al. Enhancing the efficiency of color conversion micro-LED display with a patterned cholesteric liquid crystal polymer film[J]. Nanomaterials, 2020, 10(12): 2430. doi: 10.3390/nano10122430.
    [24]
    FAN Z Y, LIN J Y, JIANG H X. III-nitride micro-emitter arrays: development and applications[J]. Journal of Physics D:Applied Physics, 2008, 41(9): 094001. doi: 10.1088/0022-3727/41/9/094001
    [25]
    PARK H J, CHA Y J, KWAK J S. Chip size-dependent light extraction efficiency for blue micro-LEDs[J]. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2019, 32(1): 47-52.
    [26]
    BAYNEVA I I. Calculation and construction of optical elements of light devices[J]. Dilemas Contemp Educ Política Valores, 2019, 6: 58. (查阅网上资料, 未找到本条文献信息, 请确认).
    [27]
    GUO W, MENG H, CHEN Y R, et al. Wafer-level monolithic integration of vertical micro-LEDs on glass[J]. IEEE Photonics Technology Letters, 2020, 32(12): 673-676. doi: 10.1109/LPT.2020.2991672
    [28]
    PARK H J, CHA Y J, KWAK J S. Chip size-dependent light extraction efficiency for blue micro-LEDs[J]. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2019, 321): 47-52. (查阅网上资料, 本条文献与第25条文献重复, 请确认).
    [29]
    LELIKOV Y S, BOCHKAREVA N I, GORBUNOV R I, et al. Measurement of the absorption coefficient for light laterally propagating in light-emitting diode structures with In0.2Ga0.8N/GaN quantum wells[J]. Semiconductors, 2008, 42(11): 1342-1345. doi: 10.1134/S1063782608110195
    [30]
    DU Y J, CHANG B K, FU X Q, et al. Electronic structure and optical properties of zinc-blende GaN[J]. Optik, 2012, 123(24): 2208-2212. doi: 10.1016/j.ijleo.2011.10.017
    [31]
    ZHAO G Y, ISHIKAWA H, JIANG H, et al. Optical absorption and photoluminescence studies of n-type GaN[J]. Japanese Journal of Applied Physics, 1999, 38(9A): L993-L995. doi: 10.1143/JJAP.38.L993
    [32]
    YANG D, THOMAS M E, TROPF W J. Infrared refractive index of sapphire as a function of temperature[J]. Proceedings of SPIE, 1999, 3705: 60-69. doi: 10.1117/12.354642
    [33]
    O’MAHONY D, HOSSAIN M N, JUSTICE J, et al. High index contrast optical platform using gallium phosphide on sapphire: an alternative to SOI?[J]. Proceedings of SPIE, 2012, 8431: 84311H. doi: 10.1117/12.922687
    [34]
    TRAN N T, and SHI F G. 2007 LED package design for high optical efficiency and low viewing angle[C]. Proceedings of 2007 International Microsystems, Packaging, Assembly and Circuits Technology, , IEEE, 2007: 10-13.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(10)

    Article views(24) PDF downloads(7) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map