Citation: | ZHANG Yu-qi, ZUO Zhi-yuan, KAN Qiang, ZHAO Jia. Common failure modes and mechanisms in oxide vertical cavity surface emitting lasers[J].Chinese Optics, 2022, 15(2): 187-209.doi:10.37188/CO.EN.2021-0012 |
[1] |
TONG H X, TONG C ZH, WANG Z Y,
et al. Advances in the technology of 850 nm high-speed vertical cavity surface emitting lasers (invited)[J].
Infrared and Laser Engineering, 2020, 49(12): 20201077. (in Chinese)
doi:10.3788/IRLA20201077
|
[2] |
ZHANG J Y, LI X, ZHANG J W,
et al. Research progress of vertical-cavity surface-emitting laser[J].
Chinese Journal of Luminescence, 2020, 41(12): 1443-1459. (in Chinese)
doi:10.37188/CJL.20200339
|
[3] |
IGA K. Forty years of vertical-cavity surface-emitting laser: invention and innovation[J].
Japanese Journal of Applied Physics, 2018, 57(8S2): 08PA01.
doi:10.7567/JJAP.57.08PA01
|
[4] |
HE X Y, DONG J, HU SH,
et al. High-speed 850 nm vertical-cavity surface-emitting lasers with BCB planarization technique[J].
Chinese Optics, 2018, 11(2): 190-197.
doi:10.3788/co.20181102.0190
|
[5] |
CHEN L H, YANG G W, LIU Y X. Development of semiconductor lasers[J].
Chinese Journal of Lasers, 2020, 47(5): 0500001. (in Chinese)
doi:10.3788/CJL202047.0500001
|
[6] |
SUN T Y, XIA M J, QIAO L. Failure mechanism and detection analysis of semiconductor laser[J].
Laser&
Optoelectronics Progress, 2021, 58(19): 1900003. (in Chinese)
|
[7] |
UEDA O, PEARTON S J.
Materials and Reliability Handbook for Semiconductor Optical and Electron Devices[M]. New York: Springer, 2013.
|
[8] |
MATHES D, GUENTER J, TATUM J,
et al. AOC moving forward: the impact of materials behavior[J].
Proceedings of SPIE, 2006, 6132: 613203.
doi:10.1117/12.646447
|
[9] |
TATUM J A. Evolution of VCSELs[J].
Proceedings of SPIE, 2014, 9001: 90010C.
|
[10] |
LOWES T D. VCSEL reliability research at gore photonics[J].
Proceedings of SPIE, 2002, 4649: 121-129.
doi:10.1117/12.469226
|
[11] |
HERRICK R W. Oxide VCSEL reliability qualification at agilent technologies[J].
Proceedings of SPIE, 2002, 4649: 130-141.
doi:10.1117/12.469227
|
[12] |
AEBY I, COLLINS D, GIBSON B,
et al. Highly reliable oxide VCSELs for datacom applications[J].
Proceedings of SPIE, 2003, 4994: 152-161.
doi:10.1117/12.482633
|
[13] |
TATUM J A, GUENTER J A. The VCSELS are coming[J].
Proceedings of SPIE, 2003, 4994: 1-11.
doi:10.1117/12.475724
|
[14] |
LIU A J, WOLF P, LOTT J A,
et al. Vertical-cavity surface-emitting lasers for data communication and sensing[J].
Photonics Research, 2019, 7(2): 121-136.
doi:10.1364/PRJ.7.000121
|
[15] |
CAO Y X. Development of vertical cavity surface emitting laser modulation for data communication[J].
Journal of Physics:
Conference Series, 2020, 1653(1): 012001.
doi:10.1088/1742-6596/1653/1/012001
|
[16] |
LIU A J. Progress in single-mode and directly modulated vertical-cavity surface-emitting lasers[J].
Chinese Journal of Lasers, 2020, 47(7): 0701005. (in Chinese)
doi:10.3788/CJL202047.0701005
|
[17] |
JIMÉNEZ J. Laser diode reliability: crystal defects and degradation modes[J].
Comptes Rendus Physique, 2003, 4(6): 663-673.
doi:10.1016/S1631-0705(03)00097-5
|
[18] |
HERRICK R W. Design for reliability and common failure mechanisms in vertical cavity surface emitting lasers[J].
MRS Online Proceedings Library, 2012, 1432: 9-20.
|
[19] |
MUKHERJEE K.
Materials Science of Defects in GaAs-based Semiconductor Lasers[M]. HERRICK R W, UEDA O. Reliability of Semiconductor Lasers and Optoelectronic Devices. Cambridge: Woodhead Publishing, 2021: 113-176.
|
[20] |
UEDA O.
Reliability and Degradation of III-V Optical Devices Focusing on Gradual Degradation[M]. UEDA O, PEARTON S J. Materials and Reliability Handbook for Semiconductor Optical and Electron Devices. New York, NY: Springer, 2013: 87-122.
|
[21] |
JONES R. Do we really understand dislocations in semiconductors?[J].
Materials Science and Engineering:
B, 2000, 71(1-3): 24-29.
doi:10.1016/S0921-5107(99)00344-X
|
[22] |
KIRKBY P. Dislocation pinning in GaAs by the deliberate introduction of impurities[J].
IEEE Journal of Quantum Electronics, 1975, 11(7): 562-568.
doi:10.1109/JQE.1975.1068634
|
[23] |
TWESTEN R D, FOLLSTAEDT D M, CHOQUETTE K D,
et al. Microstructure of laterally oxidized Al
xGa
1−xAs layers in vertical‐cavity lasers[J].
Applied Physics Letters, 1996, 69(1): 19-21.
doi:10.1063/1.118103
|
[24] |
CHOQUETTE K D, GEIB K M, CHUI H C,
et al. Selective oxidation of buried AlGaAs versus AlAs layers[J].
Applied Physics Letters, 1996, 69(10): 1385-1387.
doi:10.1063/1.117589
|
[25] |
HERRICK R W, DAFINCA A, FARTHOUAT P,
et al. Corrosion-based failure of oxide-aperture VCSELs[J].
IEEE Journal of Quantum Electronics, 2013, 49(12): 1045-1052.
doi:10.1109/JQE.2013.2285572
|
[26] |
STARK T J, RUSSELL P E, NEVERS C. 3-D defect characterization using plan view and cross-sectional TEM/STEM analysis[C].
ISTFA 2005:
Conference Proceedings from the 31st International Symposium for Testing and Failure Analysis, ISTFA, 2005: 344-349.
|
[27] |
CHENG Y M, HERRICK R W, PETROFF P M,
et al.. Degradation mechanisms of vertical cavity surface emitting lasers[C].
Proceedings of International Reliability Physics Symposium, IEEE, 1996: 211-213.
|
[28] |
PAO J J, WU T C, KYI W,
et al. Reliability and manufacturability of 25G VCSELs with oxide apertures formed by
in-situmonitoring[J].
Proceedings of SPIE, 2017, 10115: 1011519.
doi:10.1117/12.2253565
|
[29] |
HERRICK R W.
Reliability and Degradation of Vertical-Cavity Surface-Emitting Lasers[M]. UEDA O, PEARTON S J. Materials and Reliability Handbook for Semiconductor Optical and Electron Devices. New York, NY: Springer, 2013: 147-205.
|
[30] |
HELMS C J, AEBY I, LUO W L,
et al. Reliability of oxide VCSELs at Emcore[J].
Proceedings of SPIE, 2004, 5364: 183-189.
doi:10.1117/12.539282
|
[31] |
JOHNSON R H. Passivation of VCSEL sidewalls: US, 9997892B2[P]. 2018-06-12.
|
[32] |
ITAKURA T, SEYAMA Y, TERADA T,
et al. Transmission-electron-microscopy observation of dislocation networks of oxide vertical-cavity surface-emitting lasers[J].
Optical Engineering, 2006, 45(1): 014201.
doi:10.1117/1.2150232
|
[33] |
MATHES D T, GUENTER J, HAWKINS B,
et al.. An atlas of ESD failure signatures in vertical cavity surface emitting lasers[C].
ISTFA,
2005:
Conference Proceedings from the 31st International Symposium for Testing and Failure Analysis, ISTFA, 2005: 336-343.
|
[34] |
GUENTER J, MATHES D, HAWKINS B,
et al. Developments at finisar AOC[J].
Proceedings of SPIE, 2008, 6908: 690805.
doi:10.1117/12.771311
|
[35] |
MCHUGO S A, KRISHNAN A, KRUEGER J J,
et al. Characterization of failure mechanisms for oxide VCSELs[J].
Proceedings of SPIE, 2003, 4994: 55-66.
doi:10.1117/12.482637
|
[36] |
KRUEGER J J, SABHARWAL R, MCHUGO S A,
et al. Studies of ESD-related failure patterns of Agilent oxide VCSELs[J].
Proceedings of SPIE, 2003, 4994: 162-172.
doi:10.1117/12.482632
|
[37] |
VANZI M, MURA G, MARCELLO G,
et al. ESD tests on 850 nm GaAs-based VCSELs[J].
Microelectronics Reliability, 2016, 64: 617-622.
doi:10.1016/j.microrel.2016.07.023
|
[38] |
GUENTER J K, TATUM J A, HAWTHORNE III R A,
et al. VCSELs at Honeywell: the story continues[J].
Proceedings of SPIE, 2004, 5364: 34-46.
doi:10.1117/12.540129
|
[39] |
PETROFF P, HARTMAN R L. Rapid degradation phenomenon in heterojunction GaAlAs–GaAs lasers[J].
Journal of Applied Physics, 1974, 45(9): 3899-3903.
doi:10.1063/1.1663883
|
[40] |
MATHES D T, HULL R, CHOQUETTE K D,
et al. Nanoscale materials characterization of degradation in VCSELs[J].
Proceedings of SPIE, 2003, 4994: 67-82.
doi:10.1117/12.482858
|
[41] |
KIM T, KIM T, KIM S,
et al. Degradation behavior of 850 nm AlGaAs/GaAs oxide VCSELs suffered from electrostatic discharge[J].
ETRI Journal, 2008, 30(6): 833-843.
doi:10.4218/etrij.08.0108.0148
|
[42] |
HO K T, CHAN C H. Failure case studies of GaAs-based oxide-confined VCSELs[C].
ISTFA 2020:
Papers Accepted for the Planned 46th International Symposium for Testing and Failure Analysis, ISTFA, 2020: 317-321.
|
[43] |
HAWKINS B M, HAWTHORNE R A, GUENTER J K,
et al.. Reliability of various size oxide aperture VCSELs[C].
52nd Electronic Components and Technology Conference 2002, IEEE, 2002: 540-550.
|
[44] |
LEI C, LI N, CHUAN X. Emcore VCSEL failure mechanism and resolution[J].
Proceedings of SPIE, 2010, 7615: 761504.
doi:10.1117/12.845968
|
[45] |
HUANG J SH, OLSON T, ISIP E. Human-body-model electrostatic-discharge and electrical-overstress studies of buried-heterostructure semiconductor lasers[J].
IEEE Transactions on Device and Materials Reliability, 2007, 7(3): 453-461.
doi:10.1109/TDMR.2007.907425
|
[46] |
MATHES D T. Materials issues for VCSEL operation and reliability[D]. Charlattesville, Virginia: University of Virginia, 2002.
|
[47] |
FURUKAWA Y, KOBAYASHI T, WAKITA K,
et al. Accelerated life test of AlGaAs–GaAs DH lasers[J].
Japanese Journal of Applied Physics, 1977, 16(8): 1495-1496.
doi:10.1143/JJAP.16.1495
|
[48] |
NANNICHI Y, MATSUI J, ISHIDA K. Rapid degradation in double-heterostructure Lasers. II. semiquantitative analyses on the propagation of dark line defects[J].
Japanese Journal of Applied Physics, 1975, 14(10): 1561-1568.
doi:10.1143/JJAP.14.1561
|
[49] |
KAMEJIMA T, ISHIDA K, MATSUI J. Injection-enhanced dislocation glide under uniaxial stress in GaAs–(GaAl)As double heterostructure laser[J].
Japanese Journal of Applied Physics, 1977, 16(2): 233-240.
doi:10.1143/JJAP.16.233
|
[50] |
MAEDA K, SATO M, KUBO A,
et al. Quantitative measurements of recombination enhanced dislocation glide in gallium arsenide[J].
Journal of Applied Physics, 1983, 54(1): 161-168.
doi:10.1063/1.331725
|
[51] |
YONENAGA I, SUMINO K. Dislocation velocity in GeSi alloy[J].
Applied Physics Letters, 1996, 69(9): 1264-1266.
doi:10.1063/1.117386
|
[52] |
DAFINCA A, WEIDBERG A R, MCMAHON S J,
et al. Reliability and degradation of oxide VCSELs due to reaction to atmospheric water vapor[J].
Proceedings of SPIE, 2013, 8639: 86390L.
doi:10.1117/12.2001195
|
[53] |
HERRICK R W. Reliability of vertical-cavity surface-emitting lasers[J].
Japanese Journal of Applied Physics, 2012, 51(11S): 11PC01.
doi:10.7567/JJAP.51.11PC01
|
[54] |
XIE S N, HERRICK R W, CHAMBERLIN D,
et al. Failure mode analysis of oxide VCSELs in high humidity and high temperature[J].
Journal of Lightwave Technology, 2003, 21(4): 1013-1019.
doi:10.1109/JLT.2003.809546
|
[55] |
XIE S N, HERRICK R W, DE BRABANDER G N,
et al. Reliability and failure mechanisms of oxide VCSELs in non-hermetic enviroments[J].
Proceedings of SPIE, 2003, 4994: 173-180.
doi:10.1117/12.480281
|
[56] |
XIE S N, DE BRABANDER G, WIDJAJA W,
et al.. Reliability of oxide VCSELs in non-hermetic environments[C].
The 15th Annual Meeting of the IEEE
Lasers and Electro-optics Society, IEEE, 2002: 544-545.
|
[57] |
DREYBRODT J, MALACARNE F. Failure mechanism of VCSELs in optical mouse applications at non-hermitic conditions[C].
2015 IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits, IEEE, 2015.
|
[58] |
WEIDBERG A R. VCSEL reliability in ATLAS and development of robust arrays[J].
Journal of Instrumentation, 2012, 7(1): C01098.
|
[59] |
COOKE M S. Studies of VCSEL failures in the optical readout systems of the ATLAS silicon trackers and liquid argon calorimeters[J].
arXiv:
|
[60] |
SIEGELIN F. Failure analysis of vertical cavity surface emission laser diodes[J].
Microelectronics Reliability, 2004, 44(9-11): 1593-1597.
doi:10.1016/j.microrel.2004.07.075
|
[61] |
WATERS R G. Diode laser degradation mechanisms: a review[J].
Progress in Quantum Electronics, 1991, 15(3): 153-174.
doi:10.1016/0079-6727(91)90004-2
|