Citation: | LIAO Sai, CHENG Ke, HUANG Hong-wei, YANG Ceng-hao, LIANG Meng-ting, SUN Wang-xuan. The Poynting vectors, spin and orbital angular momentums of uniformly polarized cosh-Pearcey-Gauss beams in the far zone[J].Chinese Optics, 2023, 16(5): 1195-1205.doi:10.37188/CO.EN.2022-0022 |
We propose cosh-Pearcey-Gauss beams with uniform polarization, which are mainly modulated by a hyperbolic cosine function (
[1] |
PEARCEY T. XXXI. The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic[J].
The London,
Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 1946, 37(268): 311-317.
doi:10.1080/14786444608561335
|
[2] |
RING J D, LINDBERG J, MOURKA A,
et al. Auto-focusing and self-healing of Pearcey beams[J].
Optics Express, 2012, 20(17): 18955-18966.
doi:10.1364/OE.20.018955
|
[3] |
KOVALEV A A, KOTLYAR V V, ZASKANOV S G,
et al. Half Pearcey laser beams[J].
Journal of Optics, 2015, 17(3): 035604.
doi:10.1088/2040-8978/17/3/035604
|
[4] |
REN ZH J, LI X D, JIN H ZH,
et al. Construction of Bi-Pearcey beams and their mathematical mechanism[J].
Acta Physica Sinica, 2016, 65(21): 214208.
doi:10.7498/aps.65.214208
|
[5] |
LIU Y J, XU CH J, LIN Z J,
et al. Auto-focusing and self-healing of symmetric odd-Pearcey Gauss beams[J].
Optics Letters, 2020, 45(11): 2957-2960.
doi:10.1364/OL.394443
|
[6] |
GAO R, REN SH M, GUO T,
et al. Propagation dynamics of chirped Pearcey-Gaussian beam in fractional Schrödinger equation under Gaussian potential[J].
Optik, 2022, 254: 168661.
doi:10.1016/j.ijleo.2022.168661
|
[7] |
CHEN K H, QIU H X, WU Y,
et al. Generation and control of dynamically tunable circular Pearcey beams with annular spiral-zone phase[J].
Science China Physics,
Mechanics&
Astronomy, 2021, 64(10): 104211.
|
[8] |
ZHOU X Y, PANG Z H, ZHAO D M. Generalized ring pearcey beams with tunable autofocusing properties[J].
Annalen der Physik, 2021, 533(7): 2100110.
doi:10.1002/andp.202100110
|
[9] |
NOSSIR N, DALIL-ESSAKALI L, BELAFHAL A. Diffraction of generalized Humbert–Gaussian beams by a helical axicon[J].
Optical and Quantum Electronics, 2021, 53(2): 94.
doi:10.1007/s11082-020-02662-5
|
[10] |
ZHAO X L, JIA X T. Vectorial structure of arbitrary vector vortex beams diffracted by a circular aperture in the far field[J].
Laser Physics, 2018, 28(1): 015004.
doi:10.1088/1555-6611/aa9813
|
[11] |
CHENG K, LU G, ZHONG X Q. Energy flux density and angular momentum density of radial Pearcey-Gauss vortex array beams in the far field[J].
Optik, 2017, 149: 189-197.
doi:10.1016/j.ijleo.2017.09.032
|
[12] |
SHU L Y, CHENG K, LIAO S,
et al. Spin angular momentum flux density of non-uniformly polarized vortex beams with tunable polarization angles in uniaxial crystals[J].
Optik, 2021, 243: 167464.
doi:10.1016/j.ijleo.2021.167464
|
[13] |
YANG Q SH, XIE Z J, ZHANG M R,
et al. Ultra-secure optical encryption based on tightly focused perfect optical vortex beams[J].
Nanophotonics, 2022, 11(5): 1063-1070.
doi:10.1515/nanoph-2021-0786
|
[14] |
ZHU L W, CAO Y Y, CHEN Q Q,
et al. Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods[J].
Opto-Electronic Advances, 2021, 4(11): 210002.
doi:10.29026/oea.2021.210002
|
[15] |
OUYANG X, XU Y, XIAN M C,
et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing[J].
Nature Photonics, 2021, 15(12): 901-907.
doi:10.1038/s41566-021-00880-1
|
[16] |
ALLEN L, BARNETT S M, PADGETT M J.
Optical Angular Momentum[M]. Boca Raton: CRC Press, 2003.
|
[17] |
BAI Y H, LV H R, FU X,
et al. Vortex beam: generation and detection of orbital angular momentum [Invited][J].
Chinese Optics Letters, 2022, 20(1): 012601.
doi:10.3788/COL202220.012601
|
[18] |
WU G H, LOU Q H, ZHOU J. Analytical vectorial structure of hollow Gaussian beams in the far field[J].
Optics Express, 2008, 16(9): 6417-6424.
doi:10.1364/OE.16.006417
|
[19] |
CHENG K, LIANG M T, SHU L Y,
et al. Polarization states and Stokes vortices of dual Butterfly-Gauss vortex beams with uniform polarization in uniaxial crystals[J].
Optics Communications, 2022, 504: 127471.
doi:10.1016/j.optcom.2021.127471
|
[20] |
ZHOU G Q, NI Y ZH, ZHANG ZH W. Analytical vectorial structure of non-paraxial nonsymmetrical vector Gaussian beam in the far field[J].
Optics Communications, 2007, 272(1): 32-39.
doi:10.1016/j.optcom.2006.11.044
|
[21] |
ZHOU G Q. Vectorial structure of an apertured Gaussian beam in the far field: an accurate method[J].
Journal of the Optical Society of America A, 2010, 27(8): 1750-1755.
doi:10.1364/JOSAA.27.001750
|
[22] |
MANDEL L, WOLF E.
Optical Coherence and Quantum Optics[M]. Cambridge: Cambridge University Press, 1995.
|
[23] |
GU B, WEN B, RUI G H,
et al. Varying polarization and spin angular momentum flux of radially polarized beams by anisotropic Kerr media[J].
Optics Letters, 2016, 41(7): 1566-1569.
doi:10.1364/OL.41.001566
|
[24] |
ANDREWS D L, BABIKER M.
The Angular Momentum of Light[M]. Cambridge: Cambridge University Press, 2012.
|
[25] |
CHEN R P, CHEW K H, DAI C Q,
et al. Optical spin-to-orbital angular momentum conversion in the near field of a highly nonparaxial optical field with hybrid states of polarization[J].
Physical Review A, 2017, 96(5): 053862.
doi:10.1103/PhysRevA.96.053862
|