Volume 16Issue 5
Sep. 2023
Turn off MathJax
Article Contents
LIAO Sai, CHENG Ke, HUANG Hong-wei, YANG Ceng-hao, LIANG Meng-ting, SUN Wang-xuan. The Poynting vectors, spin and orbital angular momentums of uniformly polarized cosh-Pearcey-Gauss beams in the far zone[J]. Chinese Optics, 2023, 16(5): 1195-1205. doi: 10.37188/CO.EN.2022-0022
Citation: LIAO Sai, CHENG Ke, HUANG Hong-wei, YANG Ceng-hao, LIANG Meng-ting, SUN Wang-xuan. The Poynting vectors, spin and orbital angular momentums of uniformly polarized cosh-Pearcey-Gauss beams in the far zone[J].Chinese Optics, 2023, 16(5): 1195-1205.doi:10.37188/CO.EN.2022-0022

The Poynting vectors, spin and orbital angular momentums of uniformly polarized cosh-Pearcey-Gauss beams in the far zone

doi:10.37188/CO.EN.2022-0022
Funds:Supported by Natural Science Foundation of Sichuan Province (No. 23NSFSC1097)
More Information
  • Author Bio:

    Liao Sai (1998—), male, was born in Mianyang, Sichuan Province. M.E, College of Optoelectronic Engineering, Chengdu University of Information Technology. His research interests are on vector structure of catastrophe beams. E-mail:1399417658@qq.com

    Cheng Ke (1979—), male, was born in Jianli, Hubei Province. Ph.D, Professor, College of Optoelectronic Engineering, Chengdu University of Information Technology. His research interests are on propagation and control of High-Power Lasers. E-mail:ck@cuit.edu.cn

  • Corresponding author:ck@cuit.edu.cn
  • Received Date:11 Nov 2022
  • Accepted Date:30 Jan 2023
  • Rev Recd Date:29 Dec 2022
  • Available Online:28 Feb 2023
  • We propose cosh-Pearcey-Gauss beams with uniform polarization, which are mainly modulated by a hyperbolic cosine function ( n , Ω ) and the angles related to uniform polarization ( α , δ ). Based on angular spectrum representation and the stationary phase method, the Poynting vector, Spin Angular Momentums (SAM) and Orbital Angular Momentums (OAMs) in the far zone are studied. The results show that a larger n or Ω in the hyperbolic cosine function can partition the longitudinal Poynting vectors, SAMs and OAMs into more multi-lobed parabolic structures. Different polarizations described by ( α , δ ) can distinguish their Poynting vectors and angular momentums between the TE and TM terms, though this does not affect the patterns of the whole beam. Furthermore, the weight of the left and right sides of longitudinal Poynting vectors, SAMs and OAMs in TE and TM terms can be modulated by left-handed or right-handed elliptical polarization, respectively. The results in this paper may be useful for information storage and polarization imaging.

  • loading
  • [1]
    PEARCEY T. XXXI. The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1946, 37(268): 311-317. doi:10.1080/14786444608561335
    [2]
    RING J D, LINDBERG J, MOURKA A, et al. Auto-focusing and self-healing of Pearcey beams[J]. Optics Express, 2012, 20(17): 18955-18966. doi:10.1364/OE.20.018955
    [3]
    KOVALEV A A, KOTLYAR V V, ZASKANOV S G, et al. Half Pearcey laser beams[J]. Journal of Optics, 2015, 17(3): 035604. doi:10.1088/2040-8978/17/3/035604
    [4]
    REN ZH J, LI X D, JIN H ZH, et al. Construction of Bi-Pearcey beams and their mathematical mechanism[J]. Acta Physica Sinica, 2016, 65(21): 214208. doi:10.7498/aps.65.214208
    [5]
    LIU Y J, XU CH J, LIN Z J, et al. Auto-focusing and self-healing of symmetric odd-Pearcey Gauss beams[J]. Optics Letters, 2020, 45(11): 2957-2960. doi:10.1364/OL.394443
    [6]
    GAO R, REN SH M, GUO T, et al. Propagation dynamics of chirped Pearcey-Gaussian beam in fractional Schrödinger equation under Gaussian potential[J]. Optik, 2022, 254: 168661. doi:10.1016/j.ijleo.2022.168661
    [7]
    CHEN K H, QIU H X, WU Y, et al. Generation and control of dynamically tunable circular Pearcey beams with annular spiral-zone phase[J]. Science China Physics, Mechanics& Astronomy, 2021, 64(10): 104211.
    [8]
    ZHOU X Y, PANG Z H, ZHAO D M. Generalized ring pearcey beams with tunable autofocusing properties[J]. Annalen der Physik, 2021, 533(7): 2100110. doi:10.1002/andp.202100110
    [9]
    NOSSIR N, DALIL-ESSAKALI L, BELAFHAL A. Diffraction of generalized Humbert–Gaussian beams by a helical axicon[J]. Optical and Quantum Electronics, 2021, 53(2): 94. doi:10.1007/s11082-020-02662-5
    [10]
    ZHAO X L, JIA X T. Vectorial structure of arbitrary vector vortex beams diffracted by a circular aperture in the far field[J]. Laser Physics, 2018, 28(1): 015004. doi:10.1088/1555-6611/aa9813
    [11]
    CHENG K, LU G, ZHONG X Q. Energy flux density and angular momentum density of radial Pearcey-Gauss vortex array beams in the far field[J]. Optik, 2017, 149: 189-197. doi:10.1016/j.ijleo.2017.09.032
    [12]
    SHU L Y, CHENG K, LIAO S, et al. Spin angular momentum flux density of non-uniformly polarized vortex beams with tunable polarization angles in uniaxial crystals[J]. Optik, 2021, 243: 167464. doi:10.1016/j.ijleo.2021.167464
    [13]
    YANG Q SH, XIE Z J, ZHANG M R, et al. Ultra-secure optical encryption based on tightly focused perfect optical vortex beams[J]. Nanophotonics, 2022, 11(5): 1063-1070. doi:10.1515/nanoph-2021-0786
    [14]
    ZHU L W, CAO Y Y, CHEN Q Q, et al. Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods[J]. Opto-Electronic Advances, 2021, 4(11): 210002. doi:10.29026/oea.2021.210002
    [15]
    OUYANG X, XU Y, XIAN M C, et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing[J]. Nature Photonics, 2021, 15(12): 901-907. doi:10.1038/s41566-021-00880-1
    [16]
    ALLEN L, BARNETT S M, PADGETT M J. Optical Angular Momentum[M]. Boca Raton: CRC Press, 2003.
    [17]
    BAI Y H, LV H R, FU X, et al. Vortex beam: generation and detection of orbital angular momentum [Invited][J]. Chinese Optics Letters, 2022, 20(1): 012601. doi:10.3788/COL202220.012601
    [18]
    WU G H, LOU Q H, ZHOU J. Analytical vectorial structure of hollow Gaussian beams in the far field[J]. Optics Express, 2008, 16(9): 6417-6424. doi:10.1364/OE.16.006417
    [19]
    CHENG K, LIANG M T, SHU L Y, et al. Polarization states and Stokes vortices of dual Butterfly-Gauss vortex beams with uniform polarization in uniaxial crystals[J]. Optics Communications, 2022, 504: 127471. doi:10.1016/j.optcom.2021.127471
    [20]
    ZHOU G Q, NI Y ZH, ZHANG ZH W. Analytical vectorial structure of non-paraxial nonsymmetrical vector Gaussian beam in the far field[J]. Optics Communications, 2007, 272(1): 32-39. doi:10.1016/j.optcom.2006.11.044
    [21]
    ZHOU G Q. Vectorial structure of an apertured Gaussian beam in the far field: an accurate method[J]. Journal of the Optical Society of America A, 2010, 27(8): 1750-1755. doi:10.1364/JOSAA.27.001750
    [22]
    MANDEL L, WOLF E. Optical Coherence and Quantum Optics[M]. Cambridge: Cambridge University Press, 1995.
    [23]
    GU B, WEN B, RUI G H, et al. Varying polarization and spin angular momentum flux of radially polarized beams by anisotropic Kerr media[J]. Optics Letters, 2016, 41(7): 1566-1569. doi:10.1364/OL.41.001566
    [24]
    ANDREWS D L, BABIKER M. The Angular Momentum of Light[M]. Cambridge: Cambridge University Press, 2012.
    [25]
    CHEN R P, CHEW K H, DAI C Q, et al. Optical spin-to-orbital angular momentum conversion in the near field of a highly nonparaxial optical field with hybrid states of polarization[J]. Physical Review A, 2017, 96(5): 053862. doi:10.1103/PhysRevA.96.053862
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views(251) PDF downloads(188) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map